cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369814 Expansion of 1/(1 - x^3 - x^7).

This page as a plain text file.
%I A369814 #13 Feb 02 2024 09:25:33
%S A369814 1,0,0,1,0,0,1,1,0,1,2,0,1,3,1,1,4,3,1,5,6,2,6,10,5,7,15,11,9,21,21,
%T A369814 14,28,36,25,37,57,46,51,85,82,76,122,139,122,173,224,204,249,346,343,
%U A369814 371,519,567,575,768,913,918,1139,1432,1485,1714,2200,2398,2632,3339,3830,4117,5053,6030,6515,7685
%N A369814 Expansion of 1/(1 - x^3 - x^7).
%C A369814 Number of compositions of n into parts 3 and 7.
%H A369814 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,0,0,0,1).
%F A369814 a(n) = a(n-3) + a(n-7).
%o A369814 (PARI) my(N=80, x='x+O('x^N)); Vec(1/(1-x^3-x^7))
%o A369814 (PARI) a(n) = sum(k=0, n\7, ((n-4*k)%3==0)*binomial((n-4*k)/3, k));
%Y A369814 Cf. A005709, A017847, A369813, A369815, A369816.
%K A369814 nonn,easy
%O A369814 0,11
%A A369814 _Seiichi Manyama_, Feb 02 2024