cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365515 Table read by antidiagonals upward: the n-th row gives the lexicographically earliest infinite B_n sequence starting from 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 7, 4, 0, 1, 5, 13, 12, 5, 0, 1, 6, 21, 32, 20, 6, 0, 1, 7, 31, 55, 71, 30, 7, 0, 1, 8, 43, 108, 153, 124, 44, 8, 0, 1, 9, 57, 154, 366, 368, 218, 65, 9, 0, 1, 10, 73, 256, 668, 926, 856, 375, 80, 10, 0, 1, 11, 91, 333, 1153, 2214, 2286, 1424, 572, 96, 11
Offset: 1

Views

Author

Chai Wah Wu, Sep 07 2023

Keywords

Comments

A B_n sequence is a sequence such that all sums a(x_1) + a(x_2) + ... + a(x_n) are distinct for 1 <= x_1 <= x_2 <= ... <= x_n. Analogous to A347570 except that here the B_n sequences start from a(1) = 0.

Examples

			Table begins:
n\k | 1  2   3   4    5     6      7      8       9
----+---------------------------------------------------
  1 | 0, 1,  2,  3,   4,    5,     6,     7,      8, ...
  2 | 0, 1,  3,  7,  12,   20,    30,    44,     65, ...
  3 | 0, 1,  4, 13,  32,   71,   124,   218,    375, ...
  4 | 0, 1,  5, 21,  55,  153,   368,   856,   1424, ...
  5 | 0, 1,  6, 31, 108,  366,   926,  2286,   5733, ...
  6 | 0, 1,  7, 43, 154,  668,  2214,  6876,  16864, ...
  7 | 0, 1,  8, 57, 256, 1153,  4181, 14180,  47381, ...
  8 | 0, 1,  9, 73, 333, 1822,  8043, 28296, 102042, ...
  9 | 0, 1, 10, 91, 500, 3119, 13818, 59174, 211135, ...
		

Crossrefs

Cf. A001477 (n=1), A025582 (n=2), A051912 (n=3), A365300 (n=4), A365301 (n=5), A365302 (n=6), A365303 (n=7), A365304 (n=8), A365305 (n=9), A002061 (k=4), A369817 (k=5), A369818 (k=6), A369819 (k=7), A347570.

Programs

  • Python
    from itertools import count, islice, combinations_with_replacement
    def A365515_gen(): # generator of terms
        asets, alists, klist = [set()], [[]], [0]
        while True:
            for i in range(len(klist)-1,-1,-1):
                kstart, alist, aset = klist[i], alists[i], asets[i]
                for k in count(kstart):
                    bset = set()
                    for d in combinations_with_replacement(alist+[k],i):
                        if (m:=sum(d)+k) in aset:
                            break
                        bset.add(m)
                    else:
                        yield k
                        alists[i].append(k)
                        klist[i] = k+1
                        asets[i].update(bset)
                        break
            klist.append(0)
            asets.append(set())
            alists.append([])
    A365515_list = list(islice(A365515_gen(),30))

Formula

a(n) = A347570(n)-1.

A369818 The sixth term of the greedy B_n set of natural numbers.

Original entry on oeis.org

5, 20, 71, 153, 366, 668, 1153, 1822, 3119, 4448, 6348, 8559, 11565, 14976, 21023, 26220, 33066, 40306, 49601, 59354, 76031, 89248, 106008, 122909, 143989, 165196, 200759, 227660, 261030, 293736, 333825, 373110, 438191, 485952, 544356, 600523, 668573, 734072, 841679, 918988, 1012578, 1101374, 1208065, 1309426, 1474943, 1592000, 1732656
Offset: 1

Views

Author

Kevin O'Bryant, Feb 03 2024

Keywords

Comments

{0, 1, n+1, n^2+n+1, A369817(n), a(n)} is the lexicographically first set of 6 nonnegative integers with the property that the sum of any n nondecreasing terms (repetitions allowed) is unique.

Examples

			a(2) = 20, as all 21 nonincreasing sums from {0,1,3,7,12,20}, namely 0+0 < 0+1 < 1+1 < 0+3 < 1+3 < 3+3 < 0+7 < 1+7 < 3+7 < 0+12 < 1+12 < 7+7 < 3+12 < 7+12 < 0+20 < 1+20 < 3+20 < 12+12 < 7+20 < 12+20 < 20+20, are distinct, and all other 6-element sets of nonnegative integers with this property are lexicographically after {0,1,3,7,12,20}.
		

Crossrefs

Column 6 of A365515.
Cf. A369817.

Programs

  • Python
    from itertools import count, combinations_with_replacement
    def A369818(n):
        alist = [0,1,n+1,n*(n+1)+1,(n+3>>1)*n**2+(3*n+2>>1)]
        aset = set(sum(d) for d in combinations_with_replacement(alist,n))
        blist = []
        for i in range(n):
            blist.append(set(sum(d) for d in combinations_with_replacement(alist,i)))
        for k in count(max(alist[-1]+1,(n**3>>1)*(1+(n>>2)))):
            for i in range(n):
                if any((n-i)*k+d in aset for d in blist[i]):
                    break
            else:
                return k # Chai Wah Wu, Feb 28 2024

Formula

Conjectured that a(6n+i) is a quartic polynomial sequence with lead term (1/3)n^4 for each i in {1,2,3,5,6,10} in arxiv:2312.10910.
Proved that (1/8)*n^4 + (1/2)*n^3 <= a(n) <= 0.406671*n^4 + O(n^3) in arxiv:2312.10910.

A370754 a(n) = 2 + n^2*floor((n+3)/2) + floor(3*n/2).

Original entry on oeis.org

5, 13, 33, 56, 109, 155, 257, 334, 501, 617, 865, 1028, 1373, 1591, 2049, 2330, 2917, 3269, 4001, 4432, 5325, 5843, 6913, 7526, 8789, 9505, 10977, 11804, 13501, 14447, 16385, 17458, 19653, 20861, 23329, 24680, 27437, 28939, 32001, 33662, 37045, 38873, 42593, 44596
Offset: 1

Views

Author

Chai Wah Wu, Feb 29 2024

Keywords

Comments

{1, 2, n+2, n^2+n+2, a(n)} is the lexicographically first set of 5 positive integers with the property that the sum of any n nondecreasing terms (repetitions allowed) is unique.

Crossrefs

Programs

  • Mathematica
    A370754[n_] := 2 + n^2*Floor[(n+3)/2] + Floor[3*n/2]; Array[A370754, 50] (* or *)
    LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {5, 13, 33, 56, 109, 155, 257}, 50] (* Paolo Xausa, Mar 08 2024 *)

Formula

Column 5 of A347570.
a(n) = A369817(n) + 1.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7.
G.f.: x*(-2*x^6 + x^5 + 8*x^4 - x^3 + 5*x^2 + 8*x + 5)/((x - 1)*(x^2 - 1)^3).
Showing 1-3 of 3 results.