This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369819 #14 Feb 29 2024 08:53:25 %S A369819 6,30,124,368,926,2214,4181,8043,13818,23614,34825,54011,84026,109870, %T A369819 156474,217790,304910,376260,510220,667130,794873,1008048,1302947, %U A369819 1629264,1916949,2361150,2859694,3467661,3989744,4779270,5479857,6449983,7575912 %N A369819 The seventh term of the greedy B_n set of natural numbers. %C A369819 Proved in arXiv:2312.10910 that a(n) <= 0.382978*n^5 + O(n^4). %H A369819 M. B. Nathanson, <a href="https://arxiv.org/abs/2310.14426">The third positive element in the greedy B_h-set</a>, arXiv:2310.14426 [math.NT], 2023. %H A369819 M. B. Nathanson and Kevin O'Bryant, <a href="https://arxiv.org/abs/2311.14021">The fourth positive element in the greedy B_h-set</a>, arXiv:2311.14021 [math.NT], 2023. %H A369819 Kevin O'Bryant, <a href="https://arxiv.org/abs/2312.10910">B_h-sets and Rigidity</a>, arXiv:2312.10910 [math.NT], 2023. %e A369819 a(2) = 30, as all 28 nonincreasing sums from {0,1,3,7,12,20,30}, namely 0+0 < 0+1 < 1+1 < ... < 7+20 < 0+30 < 1+30 < 12+20 <3+30 < 7+30 < 20+20 < 12+30 < 20+30 < 30+30, are distinct, and all other 7-element sets of nonnegative integers with this property are lexicographically after {0,1,3,7,12,20,30}. %o A369819 (Python) %o A369819 # uses Python code from A369818 %o A369819 from itertools import count, combinations_with_replacement %o A369819 def A369819(n): %o A369819 alist = [0,1,n+1,n*(n+1)+1,(n+3>>1)*n**2+(3*n+2>>1),A369818(n)] %o A369819 aset = set(sum(d) for d in combinations_with_replacement(alist,n)) %o A369819 blist = [] %o A369819 for i in range(n): %o A369819 blist.append(set(sum(d) for d in combinations_with_replacement(alist,i))) %o A369819 for k in count(alist[-1]+1): %o A369819 for i in range(n): %o A369819 if any((n-i)*k+d in aset for d in blist[i]): %o A369819 break %o A369819 else: %o A369819 return k # _Chai Wah Wu_, Feb 28 2024 %Y A369819 Column 7 of A365515. %K A369819 nonn,more %O A369819 1,1 %A A369819 _Kevin O'Bryant_, Feb 03 2024