cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369833 a(n) is the number of distinct values of the permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers.

This page as a plain text file.
%I A369833 #11 Feb 11 2024 11:38:11
%S A369833 1,1,1,6,24,120,720,5040,40320,362880
%N A369833 a(n) is the number of distinct values of the permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers.
%H A369833 Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>.
%F A369833 a(n) <= A000142(n).
%F A369833 Conjectured e.g.f.: 1/(1 - x) - x^2/2.
%t A369833 a[n_] := CountDistinct[Table[Permanent[ToeplitzMatrix[Part[Permutations[Prime[Range[n]]], i]]], {i, n !}]]; Join[{1}, Array[a,9]]
%o A369833 (Python)
%o A369833 from itertools import permutations
%o A369833 from sympy import primerange, prime, Matrix
%o A369833 def A369833(n): return len({Matrix([p[i:0:-1]+p[:n-i] for i in range(n)]).per() for p in permutations(primerange(prime(n)+1))}) if n else 1 # _Chai Wah Wu_, Feb 11 2024
%Y A369833 Cf. A000142, A351021, A351022.
%Y A369833 Cf. A369830, A369831, A369832, A369834, A369835.
%K A369833 nonn,hard,more
%O A369833 0,4
%A A369833 _Stefano Spezia_, Feb 03 2024