This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369836 #16 Mar 15 2024 17:39:43 %S A369836 1,2,8,34,140,571,2328,9496,38740,158045,644761,2630364,10730820, %T A369836 43777405,178594110,728591751,2972359720,12126025705,49469281395, %U A369836 201814663875,823322219501,3358821723401,13702634402876,55901207340276,228054320813276,930369409108152 %N A369836 Number of compositions of 5*n into parts 1 and 5. %H A369836 Paolo Xausa, <a href="/A369836/b369836.txt">Table of n, a(n) for n = 0..1000</a> %H A369836 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (6,-10,10,-5,1). %F A369836 a(n) = A003520(5*n). %F A369836 a(n) = Sum_{k=0..n} binomial(n+4*k,n-k). %F A369836 a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). %F A369836 G.f.: (1-x)^4/((1-x)^5 - x). %t A369836 LinearRecurrence[{6, -10, 10, -5, 1}, {1, 2, 8, 34, 140}, 50] (* _Paolo Xausa_, Mar 15 2024 *) %o A369836 (PARI) a(n) = sum(k=0, n, binomial(n+4*k, n-k)); %Y A369836 Cf. A079675, A369837, A369838, A369839. %Y A369836 Cf. A099131, A369840, A369845. %Y A369836 Cf. A003520. %K A369836 nonn %O A369836 0,2 %A A369836 _Seiichi Manyama_, Feb 03 2024