This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369839 #17 Mar 15 2024 11:08:34 %S A369839 1,3,11,45,185,756,3084,12580,51320,209365,854126,3484490,14215310, %T A369839 57992715,236586825,965178576,3937538296,16063564001,65532845396, %U A369839 267347509271,1090669728772,4449491452173,18152125855049,74053333195325,302107654008601,1232477063116753 %N A369839 Number of compositions of 5*n-4 into parts 1 and 5. %H A369839 Paolo Xausa, <a href="/A369839/b369839.txt">Table of n, a(n) for n = 1..1000</a> %H A369839 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (6,-10,10,-5,1). %F A369839 a(n) = A003520(5*n-4). %F A369839 a(n) = Sum_{k=0..n} binomial(n+4*k,n-1-k). %F A369839 a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). %F A369839 G.f.: x*(1-x)^3/((1-x)^5 - x). %t A369839 LinearRecurrence[{6, -10, 10, -5, 1}, {1, 3, 11, 45, 185}, 50] (* _Paolo Xausa_, Mar 15 2024 *) %o A369839 (PARI) a(n) = sum(k=0, n, binomial(n+4*k, n-1-k)); %Y A369839 Cf. A079675, A369836, A369837, A369838. %Y A369839 Cf. A003520. %K A369839 nonn,easy %O A369839 1,2 %A A369839 _Seiichi Manyama_, Feb 03 2024