This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369841 #36 Mar 02 2024 15:29:09 %S A369841 1,5,3,0,0,6,7,0,1,0,9,3,3,5,6,0,7,5,1,0,4,5,3,6,0,5,3,5,1,3,9,0,3,5, %T A369841 5,7,7,5,2,0,9,0,3,2,2,5,7,3,8,0,1,9,3,1,1,1,1,5,1,6,9,5,1,0,3,5,7,4, %U A369841 1,4,9,8,3,5,3,3,9,2,1,0,7,5,3,0,7,5,1,6,1,1,9,0,1,5,5,6,7,6,1,0 %N A369841 n-th digit of the decimal expansion of 1/n, with the digit to the left of the decimal point counted as the first digit. %C A369841 The digits seem to occur with unequal frequency. In the limit as n increases, it seems that the digits, sorted in decreasing order of frequency of occurrence, are 0,5,1,3,7,9,2,6,8,4. %H A369841 Michael S. Branicky, <a href="/A369841/b369841.txt">Table of n, a(n) for n = 1..10000</a> %F A369841 a(n) = floor((10^(n-1))/n) mod 10. %e A369841 a(2) = 5 since 1/2 = 0.5 and the 2nd digit of "0.5" (including the 0) is 5. %e A369841 a(7) = 7 since 1/7 = 0.142857142857... and its 7th digit is 7. %e A369841 From _Jon E. Schoenfield_, Feb 03 2024: (Start) %e A369841 In each row of the following table, the n-th digit is surrounded by spaces: %e A369841 . %e A369841 n 1/n a(n) %e A369841 -- ----------------- ---- %e A369841 1 1 .0000000000... 1 %e A369841 2 0. 5 000000000... 5 %e A369841 3 0.3 3 33333333... 3 %e A369841 4 0.25 0 0000000... 0 %e A369841 5 0.200 0 000000... 0 %e A369841 6 0.1666 6 66666... 6 %e A369841 7 0.14284 7 1428... 7 %e A369841 8 0.125000 0 000... 0 %e A369841 9 0.1111111 1 11... 1 %e A369841 10 0.10000000 0 0... 0 %e A369841 (End) %t A369841 Table[Mod[Floor[10^(n-1)/n],10],{n,100}] (* _James C. McMahon_, Feb 04 2024 *) %o A369841 (Python) %o A369841 def a(n): return (10**(n-1)//n)%10 %o A369841 print([a(n) for n in range(1, 101)]) # _Michael S. Branicky_, Feb 03 2024 %Y A369841 Cf. A061480. %K A369841 nonn,base %O A369841 1,2 %A A369841 _Itamar Zamir_, Feb 03 2024