This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369847 #16 Mar 15 2024 11:35:02 %S A369847 1,2,3,5,12,34,92,230,549,1299,3109,7536,18364,44713,108575,263178, %T A369847 637699,1545839,3749001,9093989,22058847,53501860,129755543,314685488, %U A369847 763192224,1850966760,4489176073,10887655332,26405874658,64042115197,155321124452 %N A369847 Number of compositions of 5*n-2 into parts 3 and 5. %H A369847 Paolo Xausa, <a href="/A369847/b369847.txt">Table of n, a(n) for n = 1..1000</a> %H A369847 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,11,-5,1). %F A369847 a(n) = A052920(5*n-2). %F A369847 a(n) = Sum_{k=0..floor(n/3)} binomial(n+2*k,n-1-3*k). %F A369847 a(n) = 5*a(n-1) - 10*a(n-2) + 11*a(n-3) - 5*a(n-4) + a(n-5). %F A369847 G.f.: x*(1-x)^3/((1-x)^5 - x^3). %t A369847 LinearRecurrence[{5, -10, 11, -5, 1}, {1, 2, 3, 5, 12}, 50] (* _Paolo Xausa_, Mar 15 2024 *) %o A369847 (PARI) a(n) = sum(k=0, n\3, binomial(n+2*k, n-1-3*k)); %Y A369847 Cf. A369804, A369845, A369846, A369848. %Y A369847 Cf. A052920. %K A369847 nonn,easy %O A369847 1,2 %A A369847 _Seiichi Manyama_, Feb 03 2024