This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369848 #19 Mar 15 2024 07:24:59 %S A369848 0,1,3,6,11,23,57,149,379,928,2227,5336,12872,31236,75949,184524, %T A369848 447702,1085401,2631240,6380241,15474230,37533077,91034937,220790480, %U A369848 535475968,1298668192,3149634952,7638811025,18526466357,44932341015,108974456212,264295580664 %N A369848 Number of compositions of 5*n-4 into parts 3 and 5. %H A369848 Paolo Xausa, <a href="/A369848/b369848.txt">Table of n, a(n) for n = 1..1000</a> %H A369848 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,11,-5,1). %F A369848 a(n) = A052920(5*n-4). %F A369848 a(n) = Sum_{k=0..floor(n/3)} binomial(n+2*k,n-2-3*k). %F A369848 a(n) = 5*a(n-1) - 10*a(n-2) + 11*a(n-3) - 5*a(n-4) + a(n-5). %F A369848 G.f.: x^2*(1-x)^2/((1-x)^5 - x^3). %t A369848 LinearRecurrence[{5, -10, 11, -5, 1}, {0, 1, 3, 6, 11}, 50] (* _Paolo Xausa_, Mar 15 2024 *) %o A369848 (PARI) a(n) = sum(k=0, n\3, binomial(n+2*k, n-2-3*k)); %Y A369848 Cf. A369804, A369845, A369846, A369847. %Y A369848 Cf. A052920. %K A369848 nonn,easy %O A369848 1,3 %A A369848 _Seiichi Manyama_, Feb 03 2024