This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369851 #17 Mar 15 2024 07:25:05 %S A369851 0,0,1,4,10,20,36,65,129,285,661,1521,3394,7359,15706,33457,71760, %T A369851 155248,337745,735723,1600062,3471298,7517368,16269333,35221440, %U A369851 76302420,165392856,358594516,777451793,1685254125,3652428851,7915135727,17152718719,37172960128 %N A369851 Number of compositions of 5*n-3 into parts 4 and 5. %H A369851 Paolo Xausa, <a href="/A369851/b369851.txt">Table of n, a(n) for n = 1..1000</a> %H A369851 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-4,1). %F A369851 a(n) = A017827(5*n-3). %F A369851 a(n) = Sum_{k=0..floor(n/4)} binomial(n+k,n-3-4*k). %F A369851 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 4*a(n-4) + a(n-5). %F A369851 G.f.: x^3*(1-x)/((1-x)^5 - x^4). %t A369851 LinearRecurrence[{5, -10, 10, -4, 1}, {0, 0, 1, 4, 10}, 50] (* _Paolo Xausa_, Mar 15 2024 *) %o A369851 (PARI) a(n) = sum(k=0, n\4, binomial(n+k, n-3-4*k)); %Y A369851 Cf. A099131, A368475, A369849, A369850. %Y A369851 Cf. A017827. %K A369851 nonn,easy %O A369851 1,4 %A A369851 _Seiichi Manyama_, Feb 03 2024