This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369875 #10 Feb 05 2024 20:57:20 %S A369875 1,1,1,1,1,4,1,1,1,1,1,19,1,1,1,1,1,11,1,11,1,1,1,85,1,1,1,6,1,64,1,1, %T A369875 1,1,1,145,1,1,1,54,1,41,1,1,5,1,1,382,1,1,1,1,1,34,1,34,1,1,1,2425,1, %U A369875 1,3,1,1,27,1,1,1,23,1,1943,1,1,1,1,1,20,1,225 %N A369875 a(n) = [x^n] Product_{d|n} (x^d + 1 + 1/x^d). %C A369875 a(n) is the number of solutions to n = Sum_{d|n} c_i * d with c_i in {-1,0,1}, i=1..tau(n), tau = A000005. %H A369875 Alois P. Heinz, <a href="/A369875/b369875.txt">Table of n, a(n) for n = 1..20000</a> %t A369875 Table[Coefficient[Product[(x^d + 1 + 1/x^d), {d, Divisors[n]}], x, n], {n, 1, 80}] %o A369875 (Python) %o A369875 from collections import Counter %o A369875 from sympy import divisors %o A369875 def A369875(n): %o A369875 c = {0:1} %o A369875 for d in divisors(n,generator=True): %o A369875 b = Counter(c) %o A369875 for j in c: %o A369875 a = c[j] %o A369875 b[j+d] += a %o A369875 b[j-d] += a %o A369875 c = b %o A369875 return c[n] # _Chai Wah Wu_, Feb 05 2024 %Y A369875 Cf. A000005, A033630, A083206, A316706, A369874. %K A369875 nonn %O A369875 1,6 %A A369875 _Ilya Gutkovskiy_, Feb 03 2024