This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369877 #67 Mar 23 2024 08:24:47 %S A369877 263,1933,3319,3391,3931,9133,11393,11933,12163,12241,12421,12613, %T A369877 13913,13931,14221,16231,21163,21613,24121,26113,31139,31193,31319, %U A369877 31391,32611,33119,33191,33911,39113,41221,61231,62131,62311,63211,91331,93113,93131,111263 %N A369877 Prime numbers p such that the product of their prime digits is equal to the product of their nonprime digits, where p has at least one prime digit. %C A369877 Terms must contain at least one prime digit (else 11 would be a term); no term contains a decimal digit 0, 5, or 7. - _Michael S. Branicky_, Mar 22 2024 %H A369877 Michael S. Branicky, <a href="/A369877/b369877.txt">Table of n, a(n) for n = 1..10000</a> %e A369877 12163 is a term because it is a prime number whose prime digits and nonprime digits have the same product: 2 * 3 = 1 * 1 * 6. %t A369877 Select[Prime[Range[11500]], Length[dp = Select[d = IntegerDigits[#], PrimeQ[#1] &]] > 0 && Times @@ dp == Times @@ Select[d, !PrimeQ[#1] &] &] (* _Amiram Eldar_, Mar 22 2024 *) %o A369877 (Python) %o A369877 from math import prod %o A369877 from sympy import isprime %o A369877 def ok(n): %o A369877 if not isprime(n): return False %o A369877 s = str(n) %o A369877 p, np = [d for d in s if d in "2357"], [d for d in s if d in "014689"] %o A369877 return p and prod(map(int, p)) == prod(map(int, np)) %o A369877 print([k for k in range(10**5) if ok(k)]) # _Michael S. Branicky_, Mar 22 2024 %Y A369877 Cf. A000040, A156343. %K A369877 nonn,base %O A369877 1,1 %A A369877 _Gonzalo MartÃnez_, Mar 19 2024