A369883 Decimal expansion of Integral_{x=0..1} x/(1 - log(x)) dx.
3, 6, 1, 3, 2, 8, 6, 1, 6, 8, 8, 8, 2, 2, 2, 5, 8, 4, 6, 9, 7, 1, 6, 1, 6, 5, 7, 6, 7, 8, 7, 3, 9, 9, 3, 8, 9, 5, 4, 5, 9, 0, 6, 4, 1, 5, 4, 7, 3, 0, 2, 3, 9, 6, 1, 7, 1, 3, 7, 7, 2, 3, 4, 5, 7, 8, 8, 8, 1, 7, 6, 7, 0, 8, 1, 4, 9, 0, 5, 8, 8, 5, 8, 4, 5, 0, 4, 8, 8, 5, 7, 9, 3, 7, 8, 0, 7, 8, 2, 8, 8, 3, 5, 3, 5
Offset: 0
Examples
0.361328616888222584697161657678739938954590641...
Links
- Michael Ian Shamos, A catalog of the real numbers (2011), p. 397.
- Eric Weisstein's World of Mathematics, Exponential Integral.
- Wikipedia, Exponential Integral.
Programs
-
Mathematica
RealDigits[-E^2 * ExpIntegralEi[-2], 10, 120][[1]] (* Amiram Eldar, Feb 04 2024 *)
-
PARI
intnum(x=0,1,x/(1-log(x)))
Formula
Equals Integral_{x=0..1} x/(1 - log(x)) dx.
Equals - e^2*Ei(-2), where Ei(x) is the Exponential Integral function [Shamos].
Equals Integral_{x=0..oo} dx/(e^x*(x + 2)) [Shamos].