cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369885 Decimal expansion of Sum_{k>=1} log(k+1)/k^2.

Original entry on oeis.org

1, 8, 0, 0, 7, 5, 5, 0, 5, 6, 0, 0, 5, 2, 8, 2, 9, 9, 1, 4, 9, 6, 6, 0, 6, 0, 1, 4, 2, 1, 4, 8, 4, 3, 1, 8, 1, 4, 4, 5, 6, 6, 3, 7, 8, 3, 8, 1, 8, 4, 1, 7, 9, 3, 0, 2, 7, 1, 8, 6, 6, 7, 5, 9, 1, 7, 2, 9, 9, 8, 8, 3, 1, 7, 6, 3, 8, 6, 3, 1, 1, 8, 0, 5, 1, 5, 9, 2, 9, 8, 4, 3, 7, 8, 8, 9, 2, 4, 3, 8, 1, 0, 9, 8, 9
Offset: 1

Views

Author

Amiram Eldar, Feb 04 2024

Keywords

Examples

			1.80075505600528299149660601421484318144566378381841...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^(k+1)*Zeta(k)/(k-2), k = 3 .. infinity) - Zeta(1, 2), 120)
  • Mathematica
    RealDigits[NIntegrate[HarmonicNumber[x]/x^2, {x, 1, Infinity}, WorkingPrecision -> 120]][[1]]
  • PARI
    sumpos(k = 1, log(k+1)/k^2)
    
  • PARI
    sumalt(k = 3, (-1)^(k+1) * zeta(k)/(k-2)) - zeta'(2)

Formula

Equals Integral_{x>=1} H(x)/x^2 dx, where H(x) is the harmonic number for real variable x (Shamos, 2011).
Equals -zeta'(2) + Sum_{k>=3} (-1)^(k+1)*zeta(k)/(k-2) (Mező, 2014).
Equals Sum_{k>=1} lambda(k)*H(k)/(k^2*k!) + 1 + zeta(3) - gamma * zeta(2), where lambda(k) = abs(A006232(k)/A006233(k)) is the n-th non-alternating Cauchy number, H(k) = A001008(k)/A002805(k) is the k-th harmonic number, and gamma is Euler's constant (A001620) (Candelpergher and Coppo, 2012). - Amiram Eldar, Mar 18 2024