cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369887 Sum of products of squares of parts , counted without multiplicity, in all partitions of n.

This page as a plain text file.
%I A369887 #9 Feb 04 2024 09:00:41
%S A369887 1,1,5,14,34,95,208,537,1090,2812,5566,12480,26199,53486,112866,
%T A369887 229111,450800,885030,1778190,3319846,6624376,12354288,23674929,
%U A369887 43485580,81441398,149864634,273431081,503205344,906757150,1630802024,2920280596,5166820832
%N A369887 Sum of products of squares of parts , counted without multiplicity, in all partitions of n.
%F A369887 G.f.: Product_{k>=1} 1 + k^2*x^k/(1-x^k).
%e A369887 The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1. So a(4) = 16 + 9 + 4 + 4 + 1 = 34.
%o A369887 (PARI) my(N=40, x='x+O('x^N)); Vec(prod(k=1, N, 1+k^2*x^k/(1-x^k)))
%Y A369887 Cf. A162506, A369888.
%Y A369887 Cf. A077335.
%K A369887 nonn
%O A369887 0,3
%A A369887 _Seiichi Manyama_, Feb 04 2024