A369889 The sum of squarefree divisors of the cubefree numbers.
1, 3, 4, 3, 6, 12, 8, 4, 18, 12, 12, 14, 24, 24, 18, 12, 20, 18, 32, 36, 24, 6, 42, 24, 30, 72, 32, 48, 54, 48, 12, 38, 60, 56, 42, 96, 44, 36, 24, 72, 48, 8, 18, 72, 42, 54, 72, 80, 90, 60, 72, 62, 96, 32, 84, 144, 68, 54, 96, 144, 72, 74, 114, 24, 60, 96, 168
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := p + 1; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; cubefreeQ[n_] := Max[FactorInteger[n][[;; , 2]]] < 3; s /@ Select[Range[100], cubefreeQ] (* or *) f[p_, e_] := If[e > 2, 0, p + 1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
-
PARI
lista(kmax) = {my(f, s, p, e); for(k = 1, kmax, f = factor(k); s = prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(e < 3, p + 1, 0)); if(s > 0, print1(s, ", ")));}
-
Python
from math import prod from sympy import mobius, integer_nthroot, primefactors def A369889(n): def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return prod(p+1 for p in primefactors(m)) # Chai Wah Wu, Aug 12 2024
Comments