This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369897 #8 Feb 05 2024 09:26:57 %S A369897 3290624,4122495,4402431,5675264,6608384,6890624,7914752,8614592, %T A369897 9454400,11553920,12613887,13466816,14493248,14853375,15473024, %U A369897 16719615,17494784,18272384,18309375,22784895,24890624,25200800,25869375,25957503,26903744,26921727,27510272,28350080,29761424,31802624 %N A369897 Numbers k such that k and k + 1 each have 10 prime divisors, counted with multiplicity. %C A369897 Numbers k such that k and k + 1 are in A046314. %C A369897 If a and b are coprime terms of A046312, one of them even, then Dickson's conjecture implies there are infinitely many terms k where k/a and (k+1)/b are primes. %H A369897 Robert Israel, <a href="/A369897/b369897.txt">Table of n, a(n) for n = 1..10000</a> %e A369897 a(5) = 6608384 is a term because 6608384 = 2^9 * 12907 and 6608385 = 3^6 * 5 * 7^2 * 37 each have 10 prime divisors, counted with multiplicity. %p A369897 with(priqueue): %p A369897 R:= NULL: count:= 0: %p A369897 initialize(Q); r:= 0: %p A369897 insert([-2^10, [2$10]],Q); %p A369897 while count < 30 do %p A369897 T:= extract(Q); %p A369897 if -T[1] = r + 1 then %p A369897 R:= R, r; count:= count+1; %p A369897 fi; %p A369897 r:= -T[1]; %p A369897 p:= T[2][-1]; %p A369897 q:= nextprime(p); %p A369897 for i from 10 to 1 by -1 while T[2][i] = p do %p A369897 insert([-r*(q/p)^(11-i), [op(T[2][1..i-1]),q$(11-i)]],Q); %p A369897 od %p A369897 od: %p A369897 R; %Y A369897 Cf. A001222, A046312, A046314, A115186. %K A369897 nonn %O A369897 1,1 %A A369897 _Zak Seidov_ and _Robert Israel_, Feb 04 2024