This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369898 #7 Feb 05 2024 09:27:10 %S A369898 203391,698624,1245375,1942784,2176064,2282175,2536191,2858624, %T A369898 2953664,3282687,3560192,3655935,3914000,4068224,4135616,4205600, %U A369898 4244967,4586624,4695488,4744575,4991679,5055615,5450624,5475519,5519744,6141824,6246800,6410096,6655040,6660224,6753375,6816879,6862400 %N A369898 Numbers k such that k and k + 1 each have 9 prime divisors, counted with multiplicity. %C A369898 Numbers k such that k and k + 1 are in A046312. %C A369898 If a and b are coprime terms of A046310, one of them even, then Dickson's conjecture implies there are infinitely many terms k where k/a and (k+1)/b are primes. %H A369898 Robert Israel, <a href="/A369898/b369898.txt">Table of n, a(n) for n = 1..10000</a> %e A369898 a(3) = 1245375 is a term because 1245375 = 3^5 * 5^3 * 41 and 1245376 = 2^6 * 11 * 29 * 61 each have 9 prime factors, counted with multiplicity. %p A369898 with(priqueue): %p A369898 R:= NULL: count:= 0: %p A369898 initialize(Q); r:= 0: %p A369898 insert([-2^9, [2$9]], Q); %p A369898 while count < 40 do %p A369898 T:= extract(Q); %p A369898 if -T[1] = r + 1 then %p A369898 R:= R, r; count:= count+1; %p A369898 fi; %p A369898 r:= -T[1]; %p A369898 p:= T[2][-1]; %p A369898 q:= nextprime(p); %p A369898 for i from 9 to 1 by -1 while T[2][i] = p do %p A369898 insert([-r*(q/p)^(10-i), [op(T[2][1..i-1]), q$(10-i)]], Q); %p A369898 od %p A369898 od: %p A369898 R; %Y A369898 Cf. A001222, A046310, A046312, A115186, A369897. %K A369898 nonn %O A369898 1,1 %A A369898 _Robert Israel_, Feb 04 2024