cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369902 Number of isomorphism classes of elliptic curves over the finite field of order prime(n) whose trace of Frobenius is zero.

This page as a plain text file.
%I A369902 #7 Feb 14 2024 01:56:22
%S A369902 1,2,2,2,4,2,4,4,6,6,6,2,8,4,10,6,12,6,4,14,4,10,12,12,4,14,10,12,6,8,
%T A369902 10,20,8,12,14,14,6,4,22,14,20,10,26,4,10,18,12,14,20,10,12,30,12,28,
%U A369902 16,26,22,22,6,20,12,18,12,38,8,10,12,8,20,14,16,38,18,10,12,34,22,6,20,16
%N A369902 Number of isomorphism classes of elliptic curves over the finite field of order prime(n) whose trace of Frobenius is zero.
%C A369902 a(n) is the number of isomorphism classes of elliptic curves E over the finite field F_p such that E has exactly p+1 points over F_p.
%H A369902 Max Deuring, <a href="https://doi.org/10.1007/BF02940746">Die Typen der Multiplikatorenringe elliptischer Funktionenkörper</a>, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272.
%H A369902 R. Schoof, <a href="https://doi.org/10.1016/0097-3165(87)90003-3">Nonsingular plane cubic curves over finite fields</a>, J. Combin. Theory Ser. A 46 (1987), no. 2, 183-211.
%H A369902 W. C. Waterhouse, <a href="https://doi.org/10.24033/asens.1183">Abelian varieties over finite fields</a>, Ann Sci. E.N.S., (4) 2 (1969), 521-560.
%F A369902 a(n) = A259825(4*prime(n))/12 if n > 2.
%e A369902 For n = 1, the unique a(1) = 1 elliptic curve over F_2 whose trace of Frobenius is zero is y^2 + y = x^3.
%e A369902 For n = 2, the a(2) = 2 elliptic curves over F_3 whose trace of Frobenius is zero are y^2 = x^3 + x and y^2 = x^3 + 2*x.
%e A369902 For n = 3, the a(3) = 2 elliptic curves over F_5 whose trace of Frobenius is zero are y^2 = x^3 + 1 and y^2 = x^3 + 2.
%o A369902 (PARI) a(n) = if (n<=2, n, qfbhclassno(4*prime(n)));
%o A369902 (Sage) # A brute force computation of a(n)
%o A369902 def a(n):
%o A369902     if n==1: return 1
%o A369902     p, ECs = Primes()[n-1], []
%o A369902     for A,B in ((x, y) for x in range(p) for y in range(p)):
%o A369902         if ((4*A^3 + 27*B^2)%p != 0):
%o A369902             E = EllipticCurve(GF(p), [A,B])
%o A369902             if (E.trace_of_frobenius()==0):
%o A369902                 if not any([E.is_isomorphic(Ei) for Ei in ECs]): ECs.append(E)
%o A369902     return len(ECs)
%Y A369902 Cf. A259825, A362243.
%K A369902 nonn
%O A369902 1,2
%A A369902 _Robin Visser_, Feb 05 2024