This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369910 #13 Feb 29 2024 13:00:51 %S A369910 0,0,0,1,3,4,15,20,52,83,163,246,501,727,1295,1994,3375,4969,8267, %T A369910 12036,19287,28270,43511,62799,96364,137358,204388,291607,427446, %U A369910 601257,874088,1218524,1743989,2424096,3422084,4718626,6622937,9053800,12559895,17112883 %N A369910 Number of pairs (p,q) of partitions of n such that the set of parts in q is a proper subset of the set of parts in p. %H A369910 Alois P. Heinz, <a href="/A369910/b369910.txt">Table of n, a(n) for n = 0..350</a> %e A369910 a(5) = 4: (2111, 11111), (221, 11111), (311, 11111), (41, 11111). %e A369910 a(6) = 15: (21111, 111111), (21111, 222), (2211, 111111), (2211, 222), (3111, 111111), (321, 111111), (321, 21111), (321, 2211), (321, 222), (321, 3111), (3111, 33), (321, 33), (411, 111111), (42, 222), (51, 111111). %p A369910 b:= proc(n, m, i, t) option remember; `if`(n=0, %p A369910 `if`(t and m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1, t)+add( %p A369910 add(b(n-i*j, m-i*h, i-1, h=0 or t), h=0..m/i), j=1..n/i))) %p A369910 end: %p A369910 a:= n-> b(n$3, false): %p A369910 seq(a(n), n=0..42); %t A369910 b[n_, m_, i_, t_] := b[n, m, i, t] = If[n == 0, %t A369910 If[t && m == 0, 1, 0], If[i < 1, 0, b[n, m, i-1, t] + %t A369910 Sum[Sum[b[n-i*j, m-i*h, i-1, h == 0 || t], {h, 0, m/i}], {j, 1, n/i}]]]; %t A369910 a[n_] := b[n, n, n, False]; %t A369910 Table[a[n], {n, 0, 42}] (* _Jean-François Alcover_, Feb 29 2024, after _Alois P. Heinz_ *) %Y A369910 Cf. A297388, A369704, A369707. %K A369910 nonn %O A369910 0,5 %A A369910 _Alois P. Heinz_, Feb 05 2024