cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369914 a(n) = n * Sum_{p|n, p prime} sopf(n/p) / p.

This page as a plain text file.
%I A369914 #8 Jul 10 2025 22:44:20
%S A369914 0,0,0,4,0,13,0,8,9,29,0,38,0,53,34,16,0,57,0,78,58,125,0,76,25,173,
%T A369914 27,134,0,220,0,32,130,293,74,150,0,365,178,156,0,366,0,294,147,533,0,
%U A369914 152,49,195,298,398,0,171,146,268,370,845,0,500,0,965,237,64,194
%N A369914 a(n) = n * Sum_{p|n, p prime} sopf(n/p) / p.
%C A369914 Dirichlet convolution of c(n) and n * sopf(n), where c = A010051. - _Wesley Ivan Hurt_, Jul 10 2025
%F A369914 a(p^k) = p^k * (1 - floor(1/k)) for p prime and k>=1. - _Wesley Ivan Hurt_, Jul 09 2025
%F A369914 a(n) = n * Sum_{d|n} c(d) * sopf(n/d) / d, where c = A010051. - _Wesley Ivan Hurt_, Jul 10 2025
%t A369914 a[n_] := Sum[p, {p, Select[Divisors[n], PrimeQ]}]; Table[n*DivisorSum[n, a[n/#]/# &, PrimeQ[#] &], {n, 80}]
%Y A369914 Cf. A008472 (sopf), A010051, A369744, A369911, A369912, A369913.
%K A369914 nonn,easy
%O A369914 1,4
%A A369914 _Wesley Ivan Hurt_, Feb 05 2024