This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369919 #13 Feb 06 2024 11:33:42 %S A369919 1,1,1,2,1,9,3,1,28,54,4,1,75,490,270,5,1,186,3375,6860,1215,6,1,441, %T A369919 20181,118125,84035,5103,7,1,1016,111132,1668296,3543750,941192,20412, %U A369919 8,1,2295,580644,21003948,116363646,95681250,9882516,78732,9 %N A369919 Triangular array read by rows. T(n,k) is the number of labeled posets on [n] of rank at most one with exactly k elements of positive indegree, n >= 0, 0 <= k <= max{0,n-1}. %C A369919 The rank of a poset is the number of cover relations in a maximal chain. %C A369919 Equivalently, T(n,k) is the number of labeled posets P on [n] of rank at most one such that |image(P)| = k. %F A369919 E.g.f.: Sum_{n>=0} x^n/n!*exp(y*x)^(2^n-1). %F A369919 T(n,1) = A058877(n). %e A369919 Triangle begins %e A369919 1; %e A369919 1; %e A369919 1, 2; %e A369919 1, 9, 3; %e A369919 1, 28, 54, 4; %e A369919 1, 75, 490, 270, 5; %e A369919 1, 186, 3375, 6860, 1215, 6; %e A369919 ... %t A369919 nn = 9; Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[Series[ Sum[ Exp[y x]^(2^n - 1) x^n/n!, {n, 0, nn}], {x, 0, nn}], {x, y}]] // Grid %Y A369919 Cf. A001831 (row sums), A058877, A263859, A369921. %K A369919 nonn,tabl %O A369919 0,4 %A A369919 _Geoffrey Critzer_, Feb 05 2024