cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369923 Array read by antidiagonals: A(n,k) is the number of permutations of n copies of 1..k with values introduced in order and without cyclically adjacent elements equal.

This page as a plain text file.
%I A369923 #15 Feb 21 2025 16:46:56
%S A369923 0,1,0,1,1,0,1,4,1,0,1,31,22,1,0,1,293,1415,134,1,0,1,3326,140343,
%T A369923 75843,866,1,0,1,44189,20167651,83002866,4446741,5812,1,0,1,673471,
%U A369923 3980871156,158861646466,55279816356,276154969,40048,1,0
%N A369923 Array read by antidiagonals: A(n,k) is the number of permutations of n copies of 1..k with values introduced in order and without cyclically adjacent elements equal.
%C A369923 Also, T(n,k) is the number of generalized chord labeled loopless diagrams with k parts of K_n. See the Krasko reference for a full definition.
%H A369923 Andrew Howroyd, <a href="/A369923/b369923.txt">Table of n, a(n) for n = 1..1275</a> (first 51 antidiagonals)
%H A369923 Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, <a href="https://arxiv.org/abs/1709.03218">Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs</a>, arXiv:1709.03218 [math.CO], 2017.
%H A369923 Mathematics.StackExchange, <a href="https://math.stackexchange.com/questions/129451/find-the-number-of-arrangements-of-k-mbox-1s-k-mbox-2s-cdots">Find the number of k 1's, k 2's, ... , k n's - total kn cards</a>, Apr 08 2012.
%e A369923 Array begins:
%e A369923 n\k| 1 2    3         4              5                    6 ...
%e A369923 ---+-----------------------------------------------------------
%e A369923  1 | 0 1    1         1              1                    1 ...
%e A369923  2 | 0 1    4        31            293                 3326 ...
%e A369923  3 | 0 1   22      1415         140343             20167651 ...
%e A369923  4 | 0 1  134     75843       83002866         158861646466 ...
%e A369923  5 | 0 1  866   4446741    55279816356     1450728060971387 ...
%e A369923  6 | 0 1 5812 276154969 39738077935264 14571371516350429940 ...
%e A369923  ...
%t A369923 T[n_, k_] := If[k == 1, 0, Expand[(-1)^(k (n + 1))/(k - 1)! n Hypergeometric1F1[1 - n, 2, x]^k x^(k - 1)] /. x^p_ :> p!] (* _Eric W. Weisstein_, Feb 20 2025 *)
%o A369923 (PARI) \\ compare with A322013.
%o A369923 q(n, x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
%o A369923 T(n, k) = if(k > 1, subst(serlaplace(n*q(n, x)^k/x), x, 1)/(k-1)!, 0)
%Y A369923 Rows 2..6 are A003436, A348813, A348815, A348818, A348821.
%Y A369923 Column 3 is A197657, column 4 appears to be A209183(n)/2.
%Y A369923 Cf. A322013 (without linearly adjacent elements equal), A322093.
%K A369923 nonn,tabl
%O A369923 1,8
%A A369923 _Andrew Howroyd_, Feb 05 2024