cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369929 Array read by antidiagonals: T(n,k) is the number of achiral noncrossing partitions composed of n blocks of size k.

This page as a plain text file.
%I A369929 #14 Feb 24 2024 00:48:47
%S A369929 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,3,1,1,1,1,3,3,6,1,1,1,1,3,5,7,
%T A369929 10,1,1,1,1,4,5,16,12,20,1,1,1,1,4,7,18,31,30,35,1,1,1,1,5,7,31,35,
%U A369929 102,55,70,1,1,1,1,5,9,34,64,136,213,143,126,1
%N A369929 Array read by antidiagonals: T(n,k) is the number of achiral noncrossing partitions composed of n blocks of size k.
%C A369929 T(n,2*k-1) is the number of achiral noncrossing k-gonal cacti with n polygons.
%H A369929 Andrew Howroyd, <a href="/A369929/b369929.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals)
%H A369929 Michel Bousquet and Cédric Lamathe, <a href="https://doi.org/10.46298/dmtcs.420">On symmetric structures of order two</a>, Discrete Math. Theor. Comput. Sci. 10 (2008), 153-176. See Table 1.
%H A369929 Wikipedia, <a href="https://en.wikipedia.org/wiki/Fuss%E2%80%93Catalan_number">Fuss-Catalan number</a>.
%H A369929 Wikipedia, <a href="https://en.wikipedia.org/wiki/Noncrossing_partition">Noncrossing partition</a>.
%F A369929 T(n,k) = 2*A303929(n,k) - A303694(n,k).
%F A369929 T(n,2*k-1) = 2*A361239(n,k) - A361236(n,k).
%e A369929 Array begins:
%e A369929 ===============================================
%e A369929 n\k| 1  2   3   4    5    6    7    8     9 ...
%e A369929 ---+-------------------------------------------
%e A369929 0  | 1  1   1   1    1    1    1    1     1 ...
%e A369929 1  | 1  1   1   1    1    1    1    1     1 ...
%e A369929 2  | 1  1   1   1    1    1    1    1     1 ...
%e A369929 3  | 1  2   2   3    3    4    4    5     5 ...
%e A369929 4  | 1  3   3   5    5    7    7    9     9 ...
%e A369929 5  | 1  6   7  16   18   31   34   51    55 ...
%e A369929 6  | 1 10  12  31   35   64   70  109   117 ...
%e A369929 7  | 1 20  30 102  136  296  368  651   775 ...
%e A369929 8  | 1 35  55 213  285  663  819 1513  1785 ...
%e A369929 9  | 1 70 143 712 1155 3142 4495 9304 12350 ...
%e A369929 ...
%o A369929 (PARI) \\ u(n,k,r) are Fuss-Catalan numbers.
%o A369929 u(n,k,r) = {r*binomial(k*n + r, n)/(k*n + r)}
%o A369929 e(n,k) = {sum(j=0, n\2, u(j, k, 1+(n-2*j)*k/2))}
%o A369929 T(n, k)={if(n==0, 1, if(k%2, if(n%2, 2*u(n\2, k, (k+1)/2), u(n/2, k, 1) + u(n/2-1, k, k)), e(n, k) + if(n%2, u(n\2, k, k/2)))/2)}
%Y A369929 Columns are: A000012, A001405(n-1), A047749 (k=3), A369930 (k=4), A143546 (k=5), A143547 (k=7), A143554 (k=9), A192893 (k=11).
%Y A369929 Cf. A070914, A303694, A303929, A361236, A361239, A370060, A370062.
%K A369929 nonn,tabl
%O A369929 0,14
%A A369929 _Andrew Howroyd_, Feb 07 2024