This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369931 #11 Oct 15 2024 00:01:54 %S A369931 0,0,0,0,0,1,0,0,0,3,0,0,0,6,12,0,0,0,1,85,70,0,0,0,0,100,990,465,0,0, %T A369931 0,0,45,2805,11550,3507,0,0,0,0,10,3595,59990,140420,30016,0,0,0,0,1, %U A369931 2697,147441,1174670,1802682,286884,0,0,0,0,0,1335,222516,4710300,22467312,24556140,3026655 %N A369931 Triangle read by rows: T(n,k) is the number of labeled simple graphs with n edges and k vertices and without endpoints or isolated vertices. %C A369931 T(n,k) is the number of traceless symmetric binary matrices with 2n 1's and k rows and at least two 1's in every row. %H A369931 Andrew Howroyd, <a href="/A369931/b369931.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows) %F A369931 T(n,k) = k!*[x^k][y^n] exp(y*x^2/2 - x) * Sum_{j>=0} (1 + y)^binomial(j, 2)*(x/exp(y*x))^j/j!. %e A369931 Triangle begins: %e A369931 0; %e A369931 0, 0; %e A369931 0, 0, 1; %e A369931 0, 0, 0, 3; %e A369931 0, 0, 0, 6, 12; %e A369931 0, 0, 0, 1, 85, 70; %e A369931 0, 0, 0, 0, 100, 990, 465; %e A369931 0, 0, 0, 0, 45, 2805, 11550, 3507; %e A369931 0, 0, 0, 0, 10, 3595, 59990, 140420, 30016; %e A369931 0, 0, 0, 0, 1, 2697, 147441, 1174670, 1802682, 286884; %e A369931 ... %e A369931 The T(3,3) = 1 matrix is: %e A369931 [0 1 1] %e A369931 [1 0 1] %e A369931 [1 1 0] %e A369931 The T(4,4) = 3 matrices are: %e A369931 [0 0 1 1] [0 1 0 1] [0 1 1 0] %e A369931 [0 0 1 1] [1 0 1 0] [1 0 0 1] %e A369931 [1 1 0 0] [0 1 0 1] [1 0 0 1] %e A369931 [1 1 0 0] [1 0 1 0] [0 1 1 0] %o A369931 (PARI) %o A369931 G(n)={my(A=x/exp(x*y + O(x*x^n))); exp(y*x^2/2 - x + O(x*x^n)) * sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2)*A^k/k!)} %o A369931 T(n)={my(r=Vec(substvec(serlaplace(G(n)), [x, y], [y, x]))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y), i))} %Y A369931 Row sums are A370059. %Y A369931 Column sums are A100743. %Y A369931 Main diagonal is A001205. %Y A369931 Cf. A369928, A369932 (unlabeled). %K A369931 nonn,tabl %O A369931 1,10 %A A369931 _Andrew Howroyd_, Feb 08 2024