This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369932 #9 Feb 07 2024 23:27:39 %S A369932 0,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,0,1,3,2,0,0,0,0,3,5,2,0,0,0,0,2,11, %T A369932 9,3,0,0,0,0,1,15,32,16,4,0,0,0,0,1,12,63,76,25,5,0,0,0,0,0,8,89,234, %U A369932 162,39,6,0,0,0,0,0,5,97,515,730,332,60,9 %N A369932 Triangle read by rows: T(n,k) is the number of unlabeled simple graphs with n edges and k vertices and without endpoints or isolated vertices. %H A369932 Andrew Howroyd, <a href="/A369932/b369932.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %F A369932 T(n,k) = A123551(k,n) - A123551(k-1,n). %e A369932 Triangle begins: %e A369932 0; %e A369932 0, 0; %e A369932 0, 0, 1; %e A369932 0, 0, 0, 1; %e A369932 0, 0, 0, 1, 1; %e A369932 0, 0, 0, 1, 3, 2; %e A369932 0, 0, 0, 0, 3, 5, 2; %e A369932 0, 0, 0, 0, 2, 11, 9, 3; %e A369932 0, 0, 0, 0, 1, 15, 32, 16, 4; %e A369932 0, 0, 0, 0, 1, 12, 63, 76, 25, 5; %e A369932 ... %o A369932 (PARI) %o A369932 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A369932 edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))} %o A369932 G(n) = {my(s=O(x*x^n)); sum(k=0, n, forpart(p=k, s+=permcount(p) * edges(p, w->1+y^w+O(y*y^n)) * x^k * prod(i=1, #p, 1-(y*x)^p[i], 1+O(x^(n-k+1))) / k!)); s*(1-x)} %o A369932 T(n)={my(r=Vec(substvec(G(n),[x,y],[y,x]))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y),i)) } %o A369932 { my(A=T(12)); for(i=1, #A, print(A[i])) } %Y A369932 Row sums are A369290. %Y A369932 Column sums are A261919. %Y A369932 Main diagonal is A008483. %Y A369932 Cf. A342557 (connected), A123551 (without endpoints). %K A369932 nonn,tabl %O A369932 1,20 %A A369932 _Andrew Howroyd_, Feb 07 2024