cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369935 The maximal exponent in the prime factorization of the numbers whose all exponents are squares (A197680).

This page as a plain text file.
%I A369935 #11 Mar 29 2025 03:26:51
%S A369935 0,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,1,
%T A369935 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U A369935 1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1
%N A369935 The maximal exponent in the prime factorization of the numbers whose all exponents are squares (A197680).
%C A369935 Differs from A368474 at n = 1, 834, 4154, 5822, 6417, ... .
%H A369935 Amiram Eldar, <a href="/A369935/b369935.txt">Table of n, a(n) for n = 1..10000</a>
%F A369935 a(n) = A051903(A197680(n)).
%F A369935 a(n) = A369936(n)^2.
%F A369935 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} (k^2 * (d(k) - d(k-1))) / A357016 = 1.16184898017948977008..., where d(k) = Product_{p prime} (1 - 1/p^2 + Sum_{i=2..k} (1/p^(i^2)-1/p^(i^2+1))) for k >= 1, and d(0) = 0.
%t A369935 squareQ[n_] := IntegerQ[Sqrt[n]]; f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, squareQ], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]
%o A369935 (PARI) lista(kmax) = {my(e, q); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; q = 1; for(i = 1, #e, if(!issquare(e[i]), q = 0; break)); if(q, print1(vecmax(e), ", ")));}
%Y A369935 Cf. A000290, A051903, A197680, A357016, A368474, A369936.
%K A369935 nonn,easy
%O A369935 1,12
%A A369935 _Amiram Eldar_, Feb 06 2024