cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369936 a(n) = sqrt(A369935(n)).

This page as a plain text file.
%I A369936 #11 Mar 29 2025 03:26:55
%S A369936 0,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,
%T A369936 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U A369936 1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1
%N A369936 a(n) = sqrt(A369935(n)).
%H A369936 Amiram Eldar, <a href="/A369936/b369936.txt">Table of n, a(n) for n = 1..10000</a>
%F A369936 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} (k * (d(k) - d(k-1))) / A357016 = 1.05307232234978965366..., where d(k) = Product_{p prime} (1 - 1/p^2 + Sum_{i=2..k} (1/p^(i^2)-1/p^(i^2+1))) for k >= 1, and d(0) = 0.
%t A369936 squareQ[n_] := IntegerQ[Sqrt[n]]; f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, squareQ], Sqrt[Max @@ e], Nothing]]; f[1] = 0; Array[f, 150]
%o A369936 (PARI) lista(kmax) = {my(e, q); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; q = 1; for(i = 1, #e, if(!issquare(e[i]), q = 0; break)); if(q, print1(sqrtint(vecmax(e)), ", "))); }
%Y A369936 Cf. A357016, A369935.
%K A369936 nonn,easy
%O A369936 1,12
%A A369936 _Amiram Eldar_, Feb 06 2024