This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369946 #19 Feb 12 2024 12:35:06 %S A369946 1,2,-19,-1115,-57935,-5696488,-2307021183 %N A369946 a(n) is the minimal determinant of an n X n Hankel matrix using the first 2*n - 1 prime numbers. %H A369946 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hankel_matrix">Hankel matrix</a>. %e A369946 a(2) = -19: %e A369946 2, 5; %e A369946 5, 3. %e A369946 a(3) = -1115: %e A369946 3, 7, 11; %e A369946 7, 11, 2; %e A369946 11, 2, 5. %e A369946 a(4) = -57935: %e A369946 7, 5, 17, 2; %e A369946 5, 17, 2, 3; %e A369946 17, 2, 3, 11; %e A369946 2, 3, 11, 13. %t A369946 a[n_] := Min[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]] %o A369946 (PARI) a(n) = my(v=[1..2*n-1], m=+oo, d); forperm(v, p, d = matdet(matrix(n, n, i, j, prime(p[i+j-1]))); if (d<m, m = d)); m; \\ _Michel Marcus_, Feb 08 2024 %o A369946 (Python) %o A369946 from itertools import permutations %o A369946 from sympy import primerange, prime, Matrix %o A369946 def A369946(n): return min(Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(primerange(prime((n<<1)-1)+1))) if n else 1 # _Chai Wah Wu_, Feb 12 2024 %Y A369946 Cf. A024356, A368351. %Y A369946 Cf. A369947 (maximal), A350933 (maximal absolute value), A369949, A350939 (minimal permanent). %K A369946 sign,hard,more %O A369946 0,2 %A A369946 _Stefano Spezia_, Feb 06 2024 %E A369946 a(6) from _Michel Marcus_, Feb 08 2024