This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369951 #36 Feb 15 2024 12:40:18 %S A369951 1,2,4,8,16,18,27,32,36,216,250,256,288,400,432,450,486,576,882,1728, %T A369951 1800,1944,2000,2048,2304,2744,2916,3200,3456,3528,3600,3888,4608, %U A369951 6144,6174,6750,6912,7056,7200,7350,7776,7986,8000,8100,8232,9000,9216,9600,9800 %N A369951 Volumes of integer-sided cuboids in which either the surface area divides the volume or vice versa (assuming dimensionless unit of length). %C A369951 For n <= 9, the surface area divides the volume. The 9 triples with the edge lengths (u,v,w) are (1,1,1), (2,1,1), (2,2,1), (2,2,2), (4,4,1), (6,3,1), (3,3,3), (4,4,2), (6,3,2). %C A369951 For 10 <= n <= 19 the surfaces and volumes are equal. This is sequence A230400. %C A369951 For n >= 20 the volume divides the surface area. %F A369951 For 10 <= n <= 19, a(n) = A230400(n - 9). %e A369951 a(9) = 36, because V = 6*3*2 = 36 and S = 2*(6*3+3*2+6*2) = 72 and S/V = 2. %e A369951 a(12) = 256, because V = 8*8*4 = 256 and S = 2*(8*8+8*4+8*4) = 256 and S=V. %e A369951 a(20) = 1728, because V = 12*12*12 = 1728 and S = 6*12*12 = 864 and V/S = 2. %p A369951 A369951 := proc(V) local a, b, c, k; for a from ceil(V^(1/3)) to V do if V/a = floor(V/a) then for b from ceil(sqrt(V/a)) to floor(V/a) do c := V/(a*b); if c = floor(c) then k := 2*(a*b + c*b + a*c)/(a*b*c); if k = floor(k) or 1/k = floor(1/k) then return V; end if; end if; end do; end if; end do; end proc; seq(A369951(V), V = 1 .. 10000); %Y A369951 Cf. A230400 (subsequence), A066955. %K A369951 nonn,easy %O A369951 1,2 %A A369951 _Felix Huber_, Feb 12 2024