A375785 a(n) is the number of distinct integer-sided cuboids having the same surface as a cube with edge length n.
1, 1, 3, 3, 5, 5, 5, 7, 9, 9, 9, 13, 9, 9, 19, 15, 13, 19, 13, 23, 19, 19, 17, 29, 25, 19, 27, 23, 21, 41, 21, 31, 35, 29, 33, 45, 25, 29, 35, 51, 29, 41, 29, 45, 61, 39, 33, 61, 33, 57, 51, 45, 37, 63, 61, 51, 51, 49, 41, 97, 41, 49, 61, 63, 61, 81, 45, 67, 67
Offset: 1
Keywords
Examples
a(6) = 5 because exactly the 5 integer-sided cuboids (2, 2, 26), (2, 5, 14), (2, 6, 12), (3, 6, 10), (6, 6, 6) have the same surface as a cube with edge length 6: 2*(2*2 + 2*26 + 2*26) = 2*(2*5 + 5*14 + 2*14) = 2*(2*6 + 6*12 + 2*12) = 2*(3*6 + 6*10 + 3*10) = 2*(6*6 + 6*6 + 6*6) = 6*6^2.
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
- Felix Huber, Maple programs
- Eric Weisstein's World of Mathematics, Cuboid
Programs
-
Maple
See Huber link.
Comments