This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369974 #9 Feb 10 2024 00:08:12 %S A369974 1,0,0,0,0,0,0,0,-1,0,0,-1,0,0,-1,-1,0,0,0,-1,-1,0,0,0,-1,0,0,-1,0,0, %T A369974 0,0,-1,0,-1,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1,0,-1,-1,0,0,-1,0,-1,0,0,0, %U A369974 0,0,0,0,-1,0,0,-1,-1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,-1,0,-1,0,0,0,-1,-1,-1,0,-1,0 %N A369974 Dirichlet inverse of A369001, where A369001(n) = 1 if n' / gcd(n,n') is even, otherwise 0, and n' stands for the arithmetic derivative of n, A003415. %C A369974 a(144) = 2 is the first term > 1. %H A369974 Antti Karttunen, <a href="/A369974/b369974.txt">Table of n, a(n) for n = 1..65537</a> %F A369974 a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A369001(n/d) * a(d). %o A369974 (PARI) %o A369974 A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); }; %o A369974 A369001(n) = !(A083345(n)%2); %o A369974 memoA369974 = Map(); %o A369974 A369974(n) = if(1==n,1,my(v); if(mapisdefined(memoA369974,n,&v), v, v = -sumdiv(n,d,if(d<n,A369001(n/d)*A369974(d),0)); mapput(memoA369974,n,v); (v))); %Y A369974 Cf. A083345, A369001, A369975 (parity of terms), A369976 (positions of odd terms). %Y A369974 Agrees paritywise with A369978. %Y A369974 Cf. A358777, A359763, A359773, A359780 for similar sequences. %K A369974 sign %O A369974 1,144 %A A369974 _Antti Karttunen_, Feb 09 2024