cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369982 Number of Dyck bridges with resets from any height to zero from (0,0) to (n,0).

This page as a plain text file.
%I A369982 #21 Feb 22 2025 10:43:24
%S A369982 1,1,5,11,39,105,335,965,2965,8755,26517,79047,238065,712347,2140473,
%T A369982 6414555,19256535,57743865,173280215,519743405,1559414971,4677875401,
%U A369982 14034331635,42101584041,126307456279,378916960525,1136761282175,3410263045325,10230829252575
%N A369982 Number of Dyck bridges with resets from any height to zero from (0,0) to (n,0).
%C A369982 A Dyck bridge is a lattice path with steps U = (1,1) and D = (1,-1) that is allowed to go below the x-axis and ends at altitude 0.
%C A369982 A reset to zero is a step R = (1,-h) at altitude h for any integer h.
%H A369982 Alois P. Heinz, <a href="/A369982/b369982.txt">Table of n, a(n) for n = 0..1000</a>
%F A369982 G.f.: (2*z-1)/((3*z-1)*sqrt(1-4*z^2)).
%F A369982 a(n) ~ 3^n/sqrt(5).
%e A369982 For n = 3 the a(3) = 11 solutions are UUR, UDR, URR, DUR, DDR, DRR, RUD, RUR, RDU, RDR, RRR.
%p A369982 K := 1 - z*(u + 1/u);
%p A369982 v1, u1 := solve(K, u);
%p A369982 B := -z*diff(v1, z)/v1;
%p A369982 W := 1/(1 - 2*z);
%p A369982 series(B/(-W*z + 1), z, 30);
%p A369982 # second Maple program:
%p A369982 b:= proc(x, y) option remember; `if`(x=0, `if`(y=0, 1, 0),
%p A369982       b(x-1, 0)+b(x-1, abs(y-1))+b(x-1, y+1))
%p A369982     end:
%p A369982 a:= n-> b(n, 0):
%p A369982 seq(a(n), n=0..32);  # _Alois P. Heinz_, Feb 07 2024
%t A369982 b[x_, y_] := b[x, y] = If[x == 0, If[y == 0, 1, 0],
%t A369982    b[x - 1, 0] + b[x - 1, Abs[y - 1]] + b[x - 1, y + 1]];
%t A369982 a[n_] := b[n, 0];
%t A369982 Table[a[n], {n, 0, 32}] (* _Jean-François Alcover_, Feb 22 2025, after _Alois P. Heinz_ *)
%Y A369982 Cf. A369316 (for a different model of resets to zero).
%K A369982 nonn,walk
%O A369982 0,3
%A A369982 _Florian Schager_, Feb 07 2024