This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A369987 #13 Feb 07 2024 19:22:13 %S A369987 1,1,1,1,1,1,2,2,2,3,3,4,7,7,7,8,11,18,23,28,32,40,55,58,83,118,128, %T A369987 171,210,327,439,555,843,1009,1580,2254,3224,4703,6999,4573,6860,7760, %U A369987 12563,15626,24451,33788,48806,51522,84103,120853,171206,312262,306080,464713,657411,892342 %N A369987 Maximum of the absolute value of the coefficients of (1 - x) * (1 - x^8) * (1 - x^27) * ... * (1 - x^(n^3)). %t A369987 Table[Max[Abs[CoefficientList[Product[(1 - x^(k^3)), {k, 1, n}], x]]], {n, 0, 43}] %o A369987 (PARI) a(n) = vecmax(apply(abs, Vec(prod(i=1, n, (1-x^(i^3)))))); \\ _Michel Marcus_, Feb 07 2024 %o A369987 (Python) %o A369987 from collections import Counter %o A369987 def A369987(n): %o A369987 c = {0:1} %o A369987 for k in range(1,n+1): %o A369987 m, b = k**3, Counter(c) %o A369987 for j in c: %o A369987 b[j+m] -= c[j] %o A369987 c = b %o A369987 return max(map(abs,c.values())) # _Chai Wah Wu_, Feb 07 2024 %Y A369987 Cf. A000578, A160089, A279484, A359319, A369764, A369986. %K A369987 nonn %O A369987 0,7 %A A369987 _Ilya Gutkovskiy_, Feb 07 2024 %E A369987 More terms from _Michel Marcus_, Feb 07 2024