This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370014 #7 Feb 08 2024 03:50:32 %S A370014 2,15,510,84240,69204960,284844384000,5892302096179200, %T A370014 613826012249992396800,322003239202740297793536000, %U A370014 850857971372280730568060043264000,11334246342025651164429104024534384640000,760681528794595483313206024106936185273712640000 %N A370014 a(n) = Product_{k=0..n} (2^k + 4^(n-k)). %C A370014 For p > 1, q > 1, limit_{n->oo} ( Product_{k=0..n} (p^k + q^(n-k)) )^(1/n^2) = exp((1/2) * (log(p)^2 + log(p)*log(q) + log(q)^2) / log(p*q)); formula due to _Vaclav Kotesovec_ (cf. A369680). For this sequence, p = 2 and q = 4. %F A370014 a(n) = Product_{k=0..n} (2^k + 4^(n-k)). %F A370014 a(n) = 8^(n*(n+1)/2) * Product_{k=0..n} (1/2^k + 1/4^(n-k)). %F A370014 a(n) = 4^(n*(n+1)/2) * Product_{k=0..n} (1 + 2^n/8^k). %F A370014 a(n) = 2^(n*(n+1)/2) * Product_{k=0..n} (1 + 4^n/8^k). %F A370014 a(n) = 2^(-n*(n+1)/2) * Product_{k=0..n} (2^n + 8^k). %F A370014 a(n) = 4^(-n*(n+1)/2) * Product_{k=0..n} (4^n + 8^k). %F A370014 Limit_{n->oo} a(n)^(1/n^2) = 2^(7/6) = 2.244924096618745962867... [using the formula by _Vaclav Kotesovec_ given in the comments section]. %e A370014 a(0) = (1 + 1) = 2; %e A370014 a(1) = (1 + 4)*(2 + 1) = 15; %e A370014 a(2) = (1 + 4^2)*(2 + 4)*(2^2 + 1) = 510; %e A370014 a(3) = (1 + 4^3)*(2 + 4^2)*(2^2 + 4)*(2^3 + 1) = 84240; %e A370014 a(4) = (1 + 4^4)*(2 + 4^3)*(2^2 + 4^2)*(2^3 + 4)*(2^4 + 1) = 69204960; %e A370014 a(5) = (1 + 4^5)*(2 + 4^4)*(2^2 + 4^3)*(2^3 + 4^2)*(2^4 + 4)*(2^5 + 1) = 284844384000; %e A370014 ... %e A370014 RELATED SERIES. %e A370014 Sum_{n>=0} Product_{k=0..n} (1/2^k + 1/4^(n-k)) = 2 + 15/8 + 510/8^3 + 84240/8^6 + 69204960/8^10 + 284844384000/8^15 + 5892302096179200/8^21 + ... + a(n)/8^(n*(n+1)/2) + ... = 5.2656633442570372661094196585300212123165... %o A370014 (PARI) {a(n) = prod(k=0, n, 2^k + 4^(n-k))} %o A370014 for(n=0, 15, print1(a(n), ", ")) %Y A370014 Cf. A369673, A369674, A369675, A369676, A369677, A369678, A369679, A369680, A369681. %K A370014 nonn %O A370014 0,1 %A A370014 _Paul D. Hanna_, Feb 08 2024