This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370049 #12 May 01 2024 11:29:43 %S A370049 0,0,0,0,1,0,0,2,2,0,0,3,8,3,0,0,4,10,10,4,0,0,5,32,9,32,5,0,0,6,34, %T A370049 36,36,34,6,0,0,7,40,39,256,39,40,7,0,0,8,42,46,260,260,46,42,8,0,0,9, %U A370049 128,45,288,257,288,45,128,9,0,0,10,130,136,292,294,294,292,136,130,10,0 %N A370049 Square array A(n, k), n, k >= 0, read by antidiagonals; for any n and k >= 0 with respective binary expansions Sum_{i > 0} b_i*2^(i-1) and Sum_{i > 0} c_i*2^(i-1), the binary expansion of A(n, k) is Sum_{i > 0} d_i*2^(i-1) with d_i = (Sum_{k divides i} b_k*c_{i/k}) mod 2 for any i > 0. %C A370049 The set of nonnegative integers equipped with A form a commutative monoid. %F A370049 A(n, k) = A(k, n). %F A370049 A(m, A(n, k)) = A(A(m, n), k). %F A370049 A(m XOR n, k) = A(m, k) XOR A(n, k) (where XOR denotes the bitwise XOR operator). %F A370049 A000120(A(n, 2^k)) = A000120(n). %F A370049 A(n, 0) = 0. %F A370049 A(n, 1) = n. %F A370049 A(n, 2) = A062880(n). %e A370049 Array A(n, k) begins: %e A370049 n\k | 0 1 2 3 4 5 6 7 8 9 10 %e A370049 ----+------------------------------------------------------------- %e A370049 0 | 0 0 0 0 0 0 0 0 0 0 0 %e A370049 1 | 0 1 2 3 4 5 6 7 8 9 10 %e A370049 2 | 0 2 8 10 32 34 40 42 128 130 136 %e A370049 3 | 0 3 10 9 36 39 46 45 136 139 130 %e A370049 4 | 0 4 32 36 256 260 288 292 2048 2052 2080 %e A370049 5 | 0 5 34 39 260 257 294 291 2056 2061 2090 %e A370049 6 | 0 6 40 46 288 294 264 270 2176 2182 2216 %e A370049 7 | 0 7 42 45 292 291 270 265 2184 2191 2210 %e A370049 8 | 0 8 128 136 2048 2056 2176 2184 32768 32776 32896 %e A370049 9 | 0 9 130 139 2052 2061 2182 2191 32776 32769 32906 %e A370049 10 | 0 10 136 130 2080 2090 2216 2210 32896 32906 32776 %o A370049 (PARI) bits(n) = { my (b=vector(hammingweight(n))); for (k=1, #b, n-=2^b[k]=valuation(n,2)); return (b); } %o A370049 A(n, k) = { my (bn = bits(2*n), bk = bits(2*k), v = 0, e); for (i = 1, #bn, for (j = 1, #bk, e = bn[i] * bk[j] - 1; v = bitxor(v, 2^e););); return (v); } %Y A370049 Cf. A000120, A062880, A048720, A341288. %K A370049 nonn,base,tabl %O A370049 0,8 %A A370049 _Rémy Sigrist_, Apr 30 2024