cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370059 Number of traceless symmetric binary matrices with 2n 1's and all row sums >= 2.

This page as a plain text file.
%I A370059 #13 Feb 09 2024 12:48:57
%S A370059 1,0,0,1,3,18,156,1555,17907,234031,3414375,54984258,968680368,
%T A370059 18532158756,382616109012,8479409847277,200776196593073,
%U A370059 5058600736907013,135130222251100358,3814891312969572209,113492694557655580989,3548800852807887882157,116359373033373284971070
%N A370059 Number of traceless symmetric binary matrices with 2n 1's and all row sums >= 2.
%H A370059 Andrew Howroyd, <a href="/A370059/b370059.txt">Table of n, a(n) for n = 0..200</a>
%e A370059 The a(3) = 1 matrix is:
%e A370059   [0 1 1]
%e A370059   [1 0 1]
%e A370059   [1 1 0]
%e A370059 The a(4) = 3 matrices are:
%e A370059   [0 0 1 1]  [0 1 0 1]  [0 1 1 0]
%e A370059   [0 0 1 1]  [1 0 1 0]  [1 0 0 1]
%e A370059   [1 1 0 0]  [0 1 0 1]  [1 0 0 1]
%e A370059   [1 1 0 0]  [1 0 1 0]  [0 1 1 0]
%o A370059 (PARI) G(n)={my(A=x/exp(x*y + O(x*x^n))); exp(y*x^2/2 - x + O(x*x^n)) * sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2)*A^k/k!)}
%o A370059 seq(n)={Vec(subst(Pol(serlaplace(G(n))), x, 1))}
%Y A370059 Row sums of A369931.
%Y A370059 Cf. A001205 (row sums of matrices exactly 2).
%K A370059 nonn
%O A370059 0,5
%A A370059 _Andrew Howroyd_, Feb 08 2024