This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370069 #18 Mar 19 2024 16:38:10 %S A370069 0,1,2,40,162,8,32,160,34,544,130,520,2568,8320,552,663552,2178,512, %T A370069 10272,34848,2560,665600,2048,35360,163872,2080,10274,8396800,9052160, %U A370069 33280,2592,128,33288,133128,131584,10242,33312,2056,165888,526464,2230272,655360,2129952,8352,32800,534560,141312,2050,139394,32776 %N A370069 Lexicographically earliest sequence of distinct integers such that the concatenated binary expansions of the terms is A010051. %C A370069 If we take the binary expansion of each term and concatenate these bits to a sequence, we get the sequence of the characteristic function of primes (A010051). %C A370069 For n > 2 every term is an even Fibbinary number (A022340). %H A370069 Michael S. Branicky, <a href="/A370069/b370069.txt">Table of n, a(n) for n = 1..10000</a> %e A370069 terms 0, 1, 2, 40, 162, 8, 32 %e A370069 binary {0}, {1}, {1,0}, {1,0,1,0,0,0}, {1,0,1,0,0,0,1,0}, {1,0,0,0}, {1,0,0,0,0,0} %e A370069 A010051 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0 %t A370069 n=49; lst={0};p=2;c=Boole[PrimeQ@Range[n^2]]; Do[k=1;While[MemberQ[lst,ne=FromDigits[c[[p;;(pn=NextPrime[p,k])-1]],2]],k++]; AppendTo[lst,ne];p=pn,{i,n}];lst %o A370069 (Python) %o A370069 from sympy import nextprime %o A370069 from itertools import islice %o A370069 def agen(): # generator of terms %o A370069 yield 0 %o A370069 p, nextp, aset = 2, 3, {0} %o A370069 while True: %o A370069 an = 0 %o A370069 while an in aset: %o A370069 an = (an<<(nextp-p)) + (1<<(nextp-p-1)) %o A370069 p, nextp = nextp, nextprime(nextp) %o A370069 yield an %o A370069 aset.add(an) %o A370069 print(list(islice(agen(), 50))) # _Michael S. Branicky_, Feb 08 2024 %Y A370069 Cf A010051, A022340, A003714, A030190, A139102. %K A370069 nonn,base %O A370069 1,3 %A A370069 _Giorgos Kalogeropoulos_, Feb 08 2024