This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370075 #14 Feb 26 2024 10:42:53 %S A370075 1,1,1,2,2,1,2,4,3,1,4,6,7,4,1,2,10,13,11,5,1,6,12,23,24,16,6,1,4,18, %T A370075 35,47,40,22,7,1,6,22,53,82,87,62,29,8,1,4,28,75,135,169,149,91,37,9, %U A370075 1,10,32,103,210,304,318,240,128,46,10,1 %N A370075 Iterated partial sums of Euler totient function (A000010). Square array read by descending antidiagonals. %F A370075 T(1,k) = A000010(k) for k >= 1; T(n,k) = Sum_{i=1..k} T(n-1,i) for n > 1, k >= 1. %e A370075 First 10 rows and columns: %e A370075 n\k | 1 2 3 4 5 6 7 8 9 10 ... %e A370075 ----+--------------------------------------------------------- %e A370075 1 | 1 1 2 2 4 2 6 4 6 4 ... = A000010 %e A370075 2 | 1 2 4 6 10 12 18 22 28 32 ... = A002088 %e A370075 3 | 1 3 7 13 23 35 53 75 103 135 ... = A103116 %e A370075 4 | 1 4 11 24 47 82 135 210 313 448 ... %e A370075 5 | 1 5 16 40 87 169 304 514 827 1275 ... %e A370075 6 | 1 6 22 62 149 318 622 1136 1963 3238 ... %e A370075 7 | 1 7 29 91 240 558 1180 2316 4279 7517 ... %e A370075 8 | 1 8 37 128 368 926 2106 4422 8701 16218 ... %e A370075 9 | 1 9 46 174 542 1468 3574 7996 16697 32915 ... %e A370075 10 | 1 10 56 230 772 2240 5814 13810 30507 63422 ... %e A370075 ... %t A370075 T[1, k_] := EulerPhi[k]; T[n_, k_] := T[n, k] = Sum[T[n - 1, i], {i, 1, k}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Feb 09 2024 *) %o A370075 (MATLAB) %o A370075 function out = a(n) %o A370075 Z = zeros(n); %o A370075 A = arrayfun(@eulerPhi,[1:n]); %o A370075 Z(1,1:n) = A; %o A370075 for i = 2 : n %o A370075 A = cumsum(A); %o A370075 Z(i,1:n) = A; %o A370075 end %o A370075 [nr,nc] = size(Z); %o A370075 [R,C] = ndgrid(1:nr,1:nc); %o A370075 M = [reshape(R+C,[],1),R(:)]; %o A370075 [~,ind] = sortrows(M); %o A370075 Z = Z(ind)'; %o A370075 out = Z(1,n); %Y A370075 Cf. A000010 (Euler phi), A002088 (Euler phi partial sums), A103116 (Euler phi partial sums two iterations). %K A370075 nonn,tabl %O A370075 1,4 %A A370075 _Miles Englezou_, Feb 08 2024