cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370075 Iterated partial sums of Euler totient function (A000010). Square array read by descending antidiagonals.

This page as a plain text file.
%I A370075 #14 Feb 26 2024 10:42:53
%S A370075 1,1,1,2,2,1,2,4,3,1,4,6,7,4,1,2,10,13,11,5,1,6,12,23,24,16,6,1,4,18,
%T A370075 35,47,40,22,7,1,6,22,53,82,87,62,29,8,1,4,28,75,135,169,149,91,37,9,
%U A370075 1,10,32,103,210,304,318,240,128,46,10,1
%N A370075 Iterated partial sums of Euler totient function (A000010). Square array read by descending antidiagonals.
%F A370075 T(1,k) = A000010(k) for k >= 1; T(n,k) = Sum_{i=1..k} T(n-1,i) for n > 1, k >= 1.
%e A370075 First 10 rows and columns:
%e A370075  n\k | 1   2   3    4    5     6     7      8      9     10 ...
%e A370075  ----+---------------------------------------------------------
%e A370075   1  | 1   1   2    2    4     2     6      4      6      4 ... = A000010
%e A370075   2  | 1   2   4    6   10    12    18     22     28     32 ... = A002088
%e A370075   3  | 1   3   7   13   23    35    53     75    103    135 ... = A103116
%e A370075   4  | 1   4  11   24   47    82   135    210    313    448 ...
%e A370075   5  | 1   5  16   40   87   169   304    514    827   1275 ...
%e A370075   6  | 1   6  22   62  149   318   622   1136   1963   3238 ...
%e A370075   7  | 1   7  29   91  240   558  1180   2316   4279   7517 ...
%e A370075   8  | 1   8  37  128  368   926  2106   4422   8701  16218 ...
%e A370075   9  | 1   9  46  174  542  1468  3574   7996  16697  32915 ...
%e A370075  10  | 1  10  56  230  772  2240  5814  13810  30507  63422 ...
%e A370075  ...
%t A370075 T[1, k_] := EulerPhi[k]; T[n_, k_] := T[n, k] = Sum[T[n - 1, i], {i, 1, k}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Feb 09 2024 *)
%o A370075 (MATLAB)
%o A370075 function out = a(n)
%o A370075     Z = zeros(n);
%o A370075     A = arrayfun(@eulerPhi,[1:n]);
%o A370075     Z(1,1:n) = A;
%o A370075     for i = 2 : n
%o A370075         A = cumsum(A);
%o A370075         Z(i,1:n) = A;
%o A370075     end
%o A370075     [nr,nc] = size(Z);
%o A370075     [R,C] = ndgrid(1:nr,1:nc);
%o A370075     M = [reshape(R+C,[],1),R(:)];
%o A370075     [~,ind] = sortrows(M);
%o A370075     Z = Z(ind)';
%o A370075     out = Z(1,n);
%Y A370075 Cf. A000010 (Euler phi), A002088 (Euler phi partial sums), A103116 (Euler phi partial sums two iterations).
%K A370075 nonn,tabl
%O A370075 1,4
%A A370075 _Miles Englezou_, Feb 08 2024