cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370077 The product of exponents of the prime factorization of the largest unitary divisor of n that is a term of A138302.

This page as a plain text file.
%I A370077 #7 Feb 11 2024 05:08:00
%S A370077 1,1,1,2,1,1,1,1,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,1,2,1,1,2,1,1,1,1,1,1,
%T A370077 1,4,1,1,1,1,1,1,1,2,2,1,1,4,2,2,1,2,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,2,
%U A370077 1,1,1,2,1,1,2,2,1,1,1,4,4,1,1,2,1,1,1
%N A370077 The product of exponents of the prime factorization of the largest unitary divisor of n that is a term of A138302.
%H A370077 Amiram Eldar, <a href="/A370077/b370077.txt">Table of n, a(n) for n = 1..10000</a>
%F A370077 a(n) = A005361(A367168(n)).
%F A370077 a(n) = A006519(A005361(n)).
%F A370077 a(n) = 2^A370078(n).
%F A370077 a(n) = 1 if and only if n is an exponentially odd number (A268335).
%F A370077 a(n) <= A005361(n), with equality if and only if n is an exponentially 2^n-number (A138302).
%F A370077 Multiplicative with a(p^e) = e if e is a power of 2, and 1 otherwise.
%F A370077 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (2^k-1)*(1/p^(2^k) - 1/p^(2^k+1))) = 1.47219167074464124662... .
%t A370077 f[p_, e_] := If[e == 2^IntegerExponent[e, 2], e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A370077 (PARI) ispow2(n) = n >> valuation(n, 2) == 1;
%o A370077 a(n) = vecprod(apply(x -> if(ispow2(x), x, 1), factor(n)[, 2]));
%Y A370077 Cf. A005361, A006519, A138302, A268335, A367168, A370078.
%K A370077 nonn,easy,mult
%O A370077 1,4
%A A370077 _Amiram Eldar_, Feb 09 2024