cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370079 The product of the odd exponents of the prime factorization of n.

This page as a plain text file.
%I A370079 #9 Feb 11 2024 04:44:56
%S A370079 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,3,1,1,1,1,5,1,1,
%T A370079 1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,
%U A370079 1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N A370079 The product of the odd exponents of the prime factorization of n.
%C A370079 First differs from A363329 at n = 32.
%H A370079 Amiram Eldar, <a href="/A370079/b370079.txt">Table of n, a(n) for n = 1..10000</a>
%F A370079 a(n) = A005361(A350389(n)).
%F A370079 Multiplicative with a(p^e) = e if e is odd, and 1 if e is even.
%F A370079 a(n) = A005361(n)/A370080(n).
%F A370079 a(n) >= 1, with equality if and only if n is in A335275.
%F A370079 a(n) <= A005361(n), with equality if and only if n is an exponentially odd number (A268335).
%F A370079 Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) + 1/p^(3*s)).
%F A370079 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 1/p^4) = 1.32800597172596287374... .
%F A370079 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 2/((p^s - 1)*(p^s + 1)^2)). - _Vaclav Kotesovec_, Feb 11 2024
%t A370079 f[p_, e_] := If[OddQ[e], e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A370079 (PARI) a(n) = vecprod(apply(x -> if(x%2, x, 1), factor(n)[, 2]));
%Y A370079 Cf. A005361, A013661, A268335, A335275, A350387, A350389, A363329, A368472, A370080.
%K A370079 nonn,easy,mult
%O A370079 1,8
%A A370079 _Amiram Eldar_, Feb 09 2024