This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370080 #8 Feb 11 2024 04:53:54 %S A370080 1,1,1,2,1,1,1,1,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,1,2,1,1,2,1,1,1,1,1,1, %T A370080 1,4,1,1,1,1,1,1,1,2,2,1,1,4,2,2,1,2,1,1,1,1,1,1,1,2,1,1,2,6,1,1,1,2, %U A370080 1,1,1,2,1,1,2,2,1,1,1,4,4,1,1,2,1,1,1 %N A370080 The product of the even exponents of the prime factorization of n. %H A370080 Amiram Eldar, <a href="/A370080/b370080.txt">Table of n, a(n) for n = 1..10000</a> %F A370080 a(n) = A005361(A350388(n)). %F A370080 Multiplicative with a(p^e) = e if e is even, and 1 if e is odd. %F A370080 a(n) = A005361(n)/A370079(n). %F A370080 a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335). %F A370080 a(n) <= A005361(n), with equality if and only if n is in A335275. %F A370080 Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 1/p^s - 1/p^(3*s) + 1/p^(4*s)). %F A370080 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2)^2 * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 2/p^4 - 1/p^5) = 1.53318063378623623841... . %F A370080 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + (p^(2*s) + 1)/(p^s*(p^s - 1)*(p^s + 1)^2)). - _Vaclav Kotesovec_, Feb 11 2024 %t A370080 f[p_, e_] := If[EvenQ[e], e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A370080 (PARI) a(n) = vecprod(apply(x -> if(x%2, 1, x), factor(n)[, 2])); %Y A370080 Cf. A005361, A013661, A268335, A335275, A350386, A350388, A370079. %K A370080 nonn,easy,mult %O A370080 1,4 %A A370080 _Amiram Eldar_, Feb 09 2024