cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370080 The product of the even exponents of the prime factorization of n.

This page as a plain text file.
%I A370080 #8 Feb 11 2024 04:53:54
%S A370080 1,1,1,2,1,1,1,1,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,1,2,1,1,2,1,1,1,1,1,1,
%T A370080 1,4,1,1,1,1,1,1,1,2,2,1,1,4,2,2,1,2,1,1,1,1,1,1,1,2,1,1,2,6,1,1,1,2,
%U A370080 1,1,1,2,1,1,2,2,1,1,1,4,4,1,1,2,1,1,1
%N A370080 The product of the even exponents of the prime factorization of n.
%H A370080 Amiram Eldar, <a href="/A370080/b370080.txt">Table of n, a(n) for n = 1..10000</a>
%F A370080 a(n) = A005361(A350388(n)).
%F A370080 Multiplicative with a(p^e) = e if e is even, and 1 if e is odd.
%F A370080 a(n) = A005361(n)/A370079(n).
%F A370080 a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335).
%F A370080 a(n) <= A005361(n), with equality if and only if n is in A335275.
%F A370080 Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 1/p^s - 1/p^(3*s) + 1/p^(4*s)).
%F A370080 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2)^2 * Product_{p prime} (1 - 1/p^2 - 1/p^3 +  2/p^4 - 1/p^5) = 1.53318063378623623841... .
%F A370080 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + (p^(2*s) + 1)/(p^s*(p^s - 1)*(p^s + 1)^2)). - _Vaclav Kotesovec_, Feb 11 2024
%t A370080 f[p_, e_] := If[EvenQ[e], e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A370080 (PARI) a(n) = vecprod(apply(x -> if(x%2, 1, x), factor(n)[, 2]));
%Y A370080 Cf. A005361, A013661, A268335, A335275, A350386, A350388, A370079.
%K A370080 nonn,easy,mult
%O A370080 1,4
%A A370080 _Amiram Eldar_, Feb 09 2024