cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370090 Numbers that can be expressed in exactly one way as the unordered sum of two distinct primes.

This page as a plain text file.
%I A370090 #47 Dec 30 2024 19:18:35
%S A370090 5,7,8,9,10,12,13,14,15,19,21,25,31,33,38,39,43,45,49,55,61,63,69,73,
%T A370090 75,81,85,91,99,103,105,109,111,115,129,133,139,141,151,153,159,165,
%U A370090 169,175,181,183,193,195,199,201,213,225,229,231,235,241,243,253,259,265
%N A370090 Numbers that can be expressed in exactly one way as the unordered sum of two distinct primes.
%C A370090 Apparently, a number that is the predecessor or successor of a prime number does not have a sum as defined here, except for a finite number of primes, which may be {7, 11, 13, 37}. - _Peter Luschny_, Feb 16 2024
%H A370090 Michael S. Branicky, <a href="/A370090/b370090.txt">Table of n, a(n) for n = 1..10000</a>
%H A370090 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>
%H A370090 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%e A370090 5 = 2+3; 7 = 2+5; 8 = 3+5; 9 = 2+7; 10 = 3+7 (10 = 5+5 is not considered).
%p A370090 select(n -> A117929(n) = 1, [seq(1..265)]);  # _Peter Luschny_, Feb 16 2024
%t A370090 tdpQ[{a_,b_}]:=AllTrue[{a,b},PrimeQ]&&a!=b; Select[Range[300],Count[IntegerPartitions[#,{2}],_?tdpQ]==1&] (* _Harvey P. Dale_, Dec 30 2024 *)
%o A370090 (Python)
%o A370090 from sympy import sieve
%o A370090 from collections import Counter
%o A370090 from itertools import combinations
%o A370090 def aupton(max):
%o A370090     sieve.extend(max)
%o A370090     a = Counter(c[0]+c[1] for c in combinations(sieve._list, 2))
%o A370090     return [n for n in range(1, max+1) if a[n] == 1]
%o A370090 print(aupton(265)) # _Michael S. Branicky_, Feb 16 2024
%Y A370090 Cf. A117929, A048974, A065091, A067187 (not necessarily distinct).
%Y A370090 If we change 1 way (this sequence) we get A077914 (2 ways), A077969 (3 ways), A078299 (4 ways), A080854 (5 ways), and A080862 (6 ways).
%K A370090 nonn
%O A370090 1,1
%A A370090 _Wesley Ivan Hurt_, Feb 11 2024