This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370092 #37 Feb 28 2024 20:40:05 %S A370092 1,1,3,16,105,856,8433,96916,1272225,18789136,308335713,5565837916, %T A370092 109603592145,2338198823416,53718370204593,1322292130204516, %U A370092 34718481333932865,968552056638097696,28609403248435931073,892022330159009036716,29276492753074019702385 %N A370092 a(0) = 1, a(n) = (-1)^n + (1/2) * Sum_{j=1..n} (1-(-1)^j-(-2)^j) * binomial(n,j) * a(n-j) for n > 0. %C A370092 Inverse binomial transform of A370456. %C A370092 Conjecture: Let k > 2 be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 10 we obtain the sequence [1, 1, 3, 6, 5, 6, 3, 6, 5, 6, 3, 6, 5, 6, 3, 6, 5, 6, ...] with an apparent period of 4 beginning at a(2). See A000670 for a more general conjecture. - _Peter Bala_, Feb 16 2024 %F A370092 E.g.f.: 2*exp(x)/(1 + exp(x) + exp(2*x) - exp(3*x)). %t A370092 a[0]=1;Table[(-1)^n+Sum[ (1-(-1)^j- (-2) ^j) *Binomial[n,j]*a[n-j]/2,{j,1,n} ],{n,0,20}] (* _James C. McMahon_, Feb 10 2024 *) %o A370092 (SageMath) %o A370092 def a(m): %o A370092 if m==0: %o A370092 return 1 %o A370092 else: %o A370092 return (-1)^m+1/2*sum([(1-(-2)^j-(-1)^j)*binomial(m,j)*a(m-j) for j in [1,..,m]]) %o A370092 list(a(m) for m in [0,..,20]) %o A370092 (PARI) seq(n)={my(p=exp(x + O(x*x^n))); Vec(serlaplace(2*p/(1 + p + p^2 - p^3)))} \\ _Andrew Howroyd_, Feb 10 2024 %Y A370092 Cf. A370163, A370456. %K A370092 nonn %O A370092 0,3 %A A370092 _Prabha Sivaramannair_, Feb 09 2024