This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370107 #20 Feb 15 2024 04:29:41 %S A370107 1,1,-1,-7,-10,27,152,169,-949,-4286,-2646,36499,133684,-376,-1458768, %T A370107 -4325495,3422105,59242995,139491393,-260949134,-2414487452, %U A370107 -4307455022,15274866472,97910544003,119082795965,-805538039024,-3921641157424,-2408010178616,40104318820288 %N A370107 Expansion of (1/x) * Series_Reversion( x / ((1-x)^2 * (1+x)^3) ). %H A370107 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A370107 G.f.: exp( Sum_{k>=1} A370106(k) * x^k/k ). %F A370107 a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(2*(n+1),k) * binomial(3*(n+1),n-k). %F A370107 a(n) = (1/(n+1)) * [x^n] ( (1-x)^2 * (1+x)^3 )^(n+1). %o A370107 (PARI) a(n) = sum(k=0, n, (-1)^k * binomial(2*(n+1), k)*binomial(3*(n+1), n-k))/(n+1); %o A370107 (PARI) my(x='x+O('x^30)); Vec(serreverse(x/((1-x)^2*(1+x)^3))/x) \\ _Michel Marcus_, Feb 10 2024 %Y A370107 Cf. A291534, A369190. %Y A370107 Cf. A370106. %K A370107 sign %O A370107 0,4 %A A370107 _Seiichi Manyama_, Feb 10 2024