This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370121 #15 Mar 08 2024 16:10:48 %S A370121 2,3,4,7,8,12,31,32,36,60,211,212,216,240,420,2311,2312,2316,2340, %T A370121 2520,4620,30031,30032,30036,30060,30240,32340,60060,510511,510512, %U A370121 510516,510540,510720,512820,540540,1021020,9699691,9699692,9699696,9699720,9699900,9702000,9729720,10210200,19399380,223092871,223092872 %N A370121 Triangle read by rows: T(n,k) = A002110(n) + A002110(k), 0 <= k <= n; sums of two primorials, not necessarily distinct. %C A370121 After the initial 2, numbers with either one 2 or two 1's in their primorial base representation (A049345), with all the other digits zeros. %H A370121 Antti Karttunen, <a href="/A370121/b370121.txt">Table of n, a(n) for n = 0..5049; the first 100 rows of triangle, flattened</a> %H A370121 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A370121 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A370121 For n >= 1, A276150(a(n)) = 2. %F A370121 For n >= 1, A276086(a(n)) = A087112(1+n). %e A370121 Triangle begins as: %e A370121 2; %e A370121 3, 4; %e A370121 7, 8, 12; %e A370121 31, 32, 36, 60; %e A370121 211, 212, 216, 240, 420; %e A370121 2311, 2312, 2316, 2340, 2520, 4620; %e A370121 30031, 30032, 30036, 30060, 30240, 32340, 60060; %e A370121 510511, 510512, 510516, 510540, 510720, 512820, 540540, 1021020; %e A370121 9699691, 9699692, 9699696, 9699720, 9699900, 9702000, 9729720, 10210200, 19399380; %o A370121 (PARI) %o A370121 A002110(n) = prod(i=1,n,prime(i)); %o A370121 A370121(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); (A002110(c) + A002110(n - binomial(c + 1, 2))); }; %Y A370121 Cf. A002110, A049345, A087112, A276086, A276150, A370129 (arithmetic derivative applied to this triangle). %Y A370121 Cf. A006862 (left edge), A088860 (right edge). %Y A370121 Cf. A177689 (same triangle without the right edge), A370134 (without the leftmost column). %Y A370121 Subsequence of A370132. %Y A370121 Cf. also A173786. %K A370121 nonn,tabl %O A370121 0,1 %A A370121 _Antti Karttunen_, Feb 29 2024