This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370129 #17 Mar 08 2024 16:11:09 %S A370129 1,1,4,1,12,16,1,80,60,92,1,216,540,608,704,1,3740,3100,4548,6324, %T A370129 8164,568,60080,40060,56292,116208,61768,110752,33975,1021040,1041768, %U A370129 794468,2415104,1091004,1357128,1942844,28300,9789116,29099520,19722884,18576860,35347200,35779644,26575580,37935056,704080,335024060 %N A370129 Triangle read by rows: T(n,k) = A003415(A002110(n)+A002110(k)), 0 <= k <= n; arithmetic derivatives of the sums of two primorial numbers. %C A370129 Apart from those positions (A014545) at the left edge where a(n) = 1, a(n) <= A087112(1+n) only at n=2, 4 and 5, i.e., never after the third row. %H A370129 Antti Karttunen, <a href="/A370129/b370129.txt">Table of n, a(n) for n = 0..1377; the first 52 rows of triangle, flattened</a> %H A370129 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A370129 a(n) = A003415(A370121(n)). %F A370129 For n, k >= 1, T(n,k) = A002110(k)*A370136(n,k) + A024451(k)*A370135(n,k). %e A370129 Triangle begins as: %e A370129 1; %e A370129 1, 4; %e A370129 1, 12, 16; %e A370129 1, 80, 60, 92; %e A370129 1, 216, 540, 608, 704; %e A370129 1, 3740, 3100, 4548, 6324, 8164; %e A370129 568, 60080, 40060, 56292, 116208, 61768, 110752; %e A370129 33975, 1021040, 1041768, 794468, 2415104, 1091004, 1357128, 1942844; %e A370129 28300, 9789116, 29099520, 19722884, 18576860, 35347200, 35779644, 26575580, 37935056; %o A370129 (PARI) %o A370129 A002110(n) = prod(i=1,n,prime(i)); %o A370129 A370121(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); (A002110(c) + A002110(n - binomial(c + 1, 2))); }; %o A370129 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); %o A370129 A370129(n) = A003415(A370121(n)); %Y A370129 Cf. A002110, A003415, A024451, A370121, A370135, A370136. %Y A370129 Cf. A014545 (positions of 1's at the left edge), A087112. %Y A370129 Cf. also A024451 (arithmetic derivatives of primorials). %K A370129 nonn,tabl %O A370129 0,3 %A A370129 _Antti Karttunen_, Feb 29 2024