This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370130 #16 Feb 13 2024 14:34:07 %S A370130 0,1,1,1,1,1,1,1,4,1,1,1,1,3,1,1,16,1,5,5,5,5,5,5,100,25,25,175,25,25, %T A370130 1,3,1,1,1,1,4,1,1,1,1,1,1,1,4,17,1,1,5,5,5,5,20,5,25,25,25,25,325,25, %U A370130 1,1,1,1,4,1,1,1,1,1,11,1,4,1,1,1,1,1,5,5,320,95,5,5,25,25,25,25,100,25,7,7,112,7,7,7,7,7,7,7,28 %N A370130 a(n) = A369669(A276086(n)), where A369669 is the greatest common divisor of the first and second arithmetic derivative of n, and A276086 is the primorial base exp-function. %H A370130 Antti Karttunen, <a href="/A370130/b370130.txt">Table of n, a(n) for n = 0..16384</a> %H A370130 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A370130 a(n) = A369669(A276086(n)). %F A370130 a(n) = gcd(A327860(n), A370131(n)). %F A370130 For n >= 1, a(n) = A085731(A327860(n)). %o A370130 (PARI) %o A370130 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); %o A370130 A369669(n) = { my(d=A003415(n)); gcd(d, A003415(d)); }; %o A370130 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A370130 A370130(n) = A369669(A276086(n)); %Y A370130 Cf. A003415, A068346, A085731, A276086, A327860, A328242 (positions of 1's), A370131. %Y A370130 Cf. A000012, A024451, A143293. %K A370130 nonn,look %O A370130 0,9 %A A370130 _Antti Karttunen_, Feb 10 2024