This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370132 #14 Mar 06 2024 01:02:40 %S A370132 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,30,31,32,33,34,35,36,37, %T A370132 38,39,40,41,42,43,44,45,46,47,60,61,62,63,64,65,66,67,68,69,70,71,72, %U A370132 73,74,75,76,77,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,240,241,242,243 %N A370132 Numbers with no digit larger than 2 in primorial base, A049345. %C A370132 Numbers k for which A328114(k) <= 2. %C A370132 Numbers k such that A276086(k) is cubefree (in A004709). %H A370132 Antti Karttunen, <a href="/A370132/b370132.txt">Table of n, a(n) for n = 1..13122</a> %H A370132 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>. %t A370132 q[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; Count[s, _?(# > 2 &)] == 0]; Select[Range[0, 250], q] (* _Amiram Eldar_, Mar 06 2024 *) %o A370132 (PARI) %o A370132 ismaxprimobasedigit_at_most(n,k) = { my(s=0, p=2); while(n, if((n%p)>k, return(0)); n = n\p; p = nextprime(1+p)); (1); }; %o A370132 isA370132(n) = ismaxprimobasedigit_at_most(n,2); %Y A370132 Cf. A004709, A049345, A276086, A328114. %Y A370132 Subsequence of A370133. %Y A370132 Subsequences: A328242, A276156 and its subsequences: A002110, A143293. %K A370132 nonn,base %O A370132 1,3 %A A370132 _Antti Karttunen_, Feb 10 2024