This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370133 #13 Mar 06 2024 00:59:54 %S A370133 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,30,31, %T A370133 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,60, %U A370133 61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,90,91,92,93,94,95,96,97,98,99 %N A370133 Numbers with no digit larger than 3 in primorial base, A049345. %C A370133 Numbers k for which A328114(k) <= 3. %C A370133 Numbers k such that A276086(k) is biquadratefree, A046100. %H A370133 Antti Karttunen, <a href="/A370133/b370133.txt">Table of n, a(n) for n = 1..24576</a> %H A370133 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>. %t A370133 q[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; Count[s, _?(# > 3 &)] == 0]; Select[Range[0, 100], q] (* _Amiram Eldar_, Mar 06 2024 *) %o A370133 (PARI) %o A370133 ismaxprimobasedigit_at_most(n,k) = { my(s=0, p=2); while(n, if((n%p)>k, return(0)); n = n\p; p = nextprime(1+p)); (1); }; %o A370133 isA370133(n) = ismaxprimobasedigit_at_most(n,3); %Y A370133 Cf. A046100, A049345, A276086, A328114. %Y A370133 Cf. A369639 (nonsquarefree numbers whose arithmetic derivative is in this sequence). %Y A370133 Cf. A370132, A276156 (subsequences). %Y A370133 Subsequence of A351576: a(n) differs from A351576(n-1) for the first time at n=97, where a(97) = 210, while A351576(96) = 120, a term not present here. %K A370133 nonn,base %O A370133 1,3 %A A370133 _Antti Karttunen_, Feb 11 2024